
© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

FFAALLLLAACCIIEESS OOFF TTHHEE CCOOSSTT BBAASSEEDD OOPPTTIIMMIIZZEERR

Wolfgang Breitling, Centrex Consulting Corporation

The essential task of the optimizer is to identify an execution plan among many possible plans that is least costly. A
query evaluation plan determines the execution sequence of relational operators such as selections, joins and
projections. The basis on which costs of different plans are compared with each other is the estimation of sizes
(cardinalities) of – temporary or intermediate – relations after an operation. These estimates are derived from
statistics on the tables, columns and indexes of the database system. Inaccurate base statistics or incorrect derived
estimates from - even accurate - statistics may cause the optimizer to choose a very poor plan. “Although the initial
error might be negligible for the first subplan – such as the first selection or join, the subsequent errors can grow very
rapidly (i.e. exponentially). Good estimates for the cost of database operations are thus critical.”[1]
This paper identifies three basic assumptions made by the cost based optimizer1 in the estimation of cardinalities of
the results of relational operations on the base and intermediate row sources and ultimately the query result set. These
assumptions, if violated, can render the cardinality estimates to be off by orders of magnitude and with them the basis
for choosing the plan with the lowest cost. Unfortunately, in reality these assumptions tend to be frequently violated.
We will examine examples of queries that breach these assumptions and show how that affects the execution plan
evaluation and selection. We will also show what remedies and workarounds, if any, are possible to right the
estimation wrongs.

THE COST BASED OPTIMIZER

The following is taken from[2] to give definitions for the terms “cardinality” and “selectivity” which will be used
throughout this paper.

Selectivity

The first type of measure is the selectivity, which represents a fraction of rows from a row set. The row set can be a base table, a view, or the
result of a join or a GROUP BY operator. The selectivity is tied to a query predicate, such as last_ name = 'Smith', or a combination of
predicates, such as last_name = 'Smith' AND job_type = 'Clerk'. A predicate acts as a filter that filters certain number of rows from a
row set. Therefore, the selectivity of a predicate indicates how many rows from a row set will pass the predicate test. The selectivity lies in the
value range 0.0 to 1.0. A selectivity of 0.0 means that no rows will be selected from a row set, and a selectivity of 1.0 means that all rows
will be selected. When statistics are available, the estimator estimates selectivity based on statistics. For example, for an equality predicate
(last_name = 'Smith') the selectivity is set to the reciprocal of the number of distinct values of last_name, because the query selects rows that
all contain one out of N distinct values.

Cardinality

Cardinality represents the number of rows in a row set. Here, the row set can be a base table, a view, or the result from a join or GROUP
BY operator. The base cardinality is the number of rows in a base table.
The effective cardinality is the number of rows that will be selected from a base table. The effective cardinality is dependent on the predicates
specified on different columns of a base table. This is because each predicate acts as a successive filter on the rows of a base table. The
effective cardinality is computed as the product of basecardinality and combined selectivity of all predicates specified on a table. When there is
no predicate on a table, its effective cardinality equals its base cardinality. The join cardinality is the number of rows produced when two row
sets are joined together. A join is a Cartesian product of two row sets with the join predicate applied as a filter to the result. Therefore, the
join cardinality is the product of the cardinalities of two row sets, multiplied by the selectivity of the join predicate.

The optimizer calculates the cost of an access plan by accumulating the costs of basic building blocks:

1 not just Oracle’s but those of other commercial database vendors as well

2 Fallacies of the Cost Based Optimizer

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

Base Access Costs

• Base table access
There are many base table access plans – full table scan, index unique, index range scan, etc. – each with its own
cost formula, but ultimately the base table access cost is dependent on the estimated number of rows that need to
be fetched: the estimated cardinality. That is true even for a full table scan or an index unique scan, irrespective
of the fact that their costs are not directly related to the estimated cardinality, but their choice is predicated by the
estimated cardinality.
Some of the cost formulas are:
• Table scan nblks / k
• Unique scan blevel+1
• Fast full scan leaf_blocks / k
• Index-only blevel + FF * leaf_blocks
• Range scan blevel + FF * leaf_blocks + FF * clustering_factor

FF (filter factor) is another term for selectivity. It is a measure of a predicate’s power to reduce the result set.
Remember that selectivity, and thus filter factor, was defined as the fraction of (expected) rows from a row set (Page
1):

Selectivity = FF = cardest / cardbase ⇔ cardest = FF * cardbase

where cardbase is the base cardinality, which for base tables is the number of rows, i.e. NUM_ROWS. For an equality
predicate for example, the selectivity (= FF) is set to the reciprocal of the number of distinct values of that column:
1/NDV. For a prime key, NDV is equal to NUM_ROWS of the table and the estimated cardinality therefore becomes:

cardest = 1/NDV * NUM_ROWS = 1/NUM_ROWS * NUM_ROWS = 1
exactly what is to be expected. For the selectivity formulas for other predicates see [3] or [4].

Join Costs

The join explanations and cost formulas are again taken from[2]

• nested loop join for every row in the outer row set, the inner row set is accessed to find all the matching rows to join. Therefore, in
a nested loop join, the inner row set is accessed as many times as the number of rows in the outer row set.:

cost = outer access cost + (inner access cost * outer cardinality)

• sort merge join the two row sets being joined are sorted by the join keys if they are not already in key order.
cost = outer access cost + inner access cost + sort costs (if sort is used)

• hash join the inner row set is hashed into memory, and a hash table is built using the join key. Each row from the outer
row set is then hashed, and the hash table is probed to join all matching rows. If the inner row set is very large, then only a portion of it
is hashed into memory. This portion is called a hash partition. Each row from the outer row set is hashed to probe matching rows in
the hash partition. The next portion of the inner row set is then hashed into memory, followed by a probe from the outer row set. This
process is repeated until all partitions of the inner row set are exhausted.

cost = (outer access cost * # of hash partitions) + inner access cost

The three join methods each have their own cost formula but all are dependent on the base access costs of the outer
and inner table and their effective cardinalities.

Other Costs

• Auxiliary steps such as a sort for a GROUP BY or ORDER BY. Again, the cost of such steps is generally related to
the size, or cardinality, of the data they operate on.

 the value of k depends on the Oracle version and the value of the init.ora parameter
db_file_multiblock_read_count. Contrary to what many believe, or event write or teach, k is not equal to
db_file_multiblock_read_count !

Fallacies of the Cost Based Optimizer 3

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

As we have seen, the cost of an access plan is a function of the estimated cardinalities of its components. This is why
it is so important that the cardinality estimates are accurate. If, for example, the optimizer underestimates the
cardinality of a base table access, it may incorrectly find that the lowest cost plan is one that uses this table as the outer
table of a NL join. Conversely. if it overestimates the cardinality, it may, again incorrectly, calculate the cost for a plan
that uses the table as the outer table of a NL join as too high and discard it in favour of a different, inferior, plan.

This dependence of the cost on the estimated cardinalities is also the reason why costs of two different explain plans
can not be compared. Something must have been different between the two environments in which the sql
statements were parsed or else the two plans would have come out the same with the same costs (there is no random
generator/selector in the CBO). This difference will have affected the estimated cardinalities which in turn affected
the access plan choice. It is also the explanation for the apparent paradox of a higher cost figure for a faster access
plan. The estimated cardinalities of the faster plan are better estimates of the real cardinalities and therefore the access
plan chosen is better under the circumstances. The plan with the lower cost would have been good for data with
lower cardinalities but goes awry as the real cardinalities differ. We will see examples of that.

THE ASSUMPTIONS

While the exact workings of the Oracle cost based optimizer are a proprietary secret of Oracle Corporation, the basics
of query optimization in general, and cost calculation, selectivity determination, and cardinality estimation in
particular, have been extensively studied in research labs and universities since E.F. Codd proposed the relational
model for databases[5]. Published papers relevant to the topics covered in this paper are listed in the references.
Given that selectivity of a predicate can also be defined as “the probability that a randomly selected row satisfies the
predicate”, the formulas for manipulating and combining predicates, and thus selectivities, borrow heavily from
probability theory. The entire problem of query optimization in a relational database is, of course, steeped in
relational theory. In order for solutions, published in the research papers, journals, and conference proceedings, to be
valid and provable within the theoretical framework, certain assumptions had to be made.
As the solutions were implemented in commercial optimizers, the formulas used, and costs calculated based on these
formulas, are only valid as long as the query and the referenced tables adhere to those assumptions. However,
commercial relational database systems and their optimizers operate in the real world rather than in an ideal
theoretical environment and the assumptions stipulated by the theory are often violated. This paper looks at 3 core
assumptions – I call them fallacies because they are so often wrong – and shows how, in succession, the optimizer’s
selectivity, cardinality and cost estimates go astray when they are violated. It will demonstrate how miscalculated
cardinalities can have a devastating effect on the access path choice and, where possible, identify solutions.

FALLACY I – THE UNIFORM DISTRIBUTION ASSUMPTION

There are three different forms of the uniform distribution assumption. One assumes that the column values are
evenly distributed across all physical blocks of the table. The second assumes that the column values are evenly
distributed across all rows of the table. Both can independently be true or false. The third assumes that the attribute
values are evenly distributed across the spectrum of values, i.e. between the lowest and the highest value.

UNIFORM DISTRIBUTION OF COLUMN VALUES OVER ALL BLOCKS

Unlike the other assumptions, which affect the cost and plan estimates indirectly through the
“selectivity cardinality cost” chain, adherence or violation of this assumption does not affect the cardinality
estimate but goes purely and directly towards the cost of an index access.
It should also be noted that, again in contrast to the other assumptions, the assumption of uniform distribution
represents the worst case scenario – the more clustered the column values are the “cheaper” the access cost. If all n
rows with a particular column value happen to be located in only 1 block, the I/O cost of access is just 1 rather than
potentially n if they are uniformly distributed.
Cary Milsap has covered this topic extensively in his paper[6].

4 Fallacies of the Cost Based Optimizer

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

UNIFORM DISTRIBUTION OF COLUMN VALUES OVER ALL ROWS

Several selectivity estimation methods have been reported in the literature. The earliest, simplest, and most commonly
used is based on the uniform distribution assumption[7]. It assumes that attribute2 values occur equally frequently in
the table, i.e. each 1/NDV times and sets the selectivity to this value. However, this assumption rarely holds in
practical situations. It has been observed that frequency distributions of attribute values often follow a power, or
“Zipf”[8] distribution.
Below, for example, is the frequency distribution of the department_id in a production general ledger table, including
the trendline which clearly shows the power distribution:

The following example shows the effect of the non-uniform distribution on the selectivity and cardinality estimate
and, ultimately, the execution plan. The frequencies of the company column values have been crafted to follow a
power distribution like that above.

COM COUNT(0)
--- ----------
B01 530
C02 350
A03 274
B04 231
C05 202
A06 181
B07 165
C08 152
A09 142
B10 133
 …
C00 28

Select
emplid, jobcode, salary
from ps_job5 b

Explain Plan

 card operation____________________________
 50 SELECT STATEMENT

2 attribute and column may be used interchangeably in this paper. Attribute and tuple are terms used in relational

theory while column and table are preferred in relational database practice.

y = 3 6 6 4 1 x - 0 .5 8 7 9

0

5 ,0 0 0

1 0 ,0 0 0

1 5 ,0 0 0

2 0 ,0 0 0

2 5 ,0 0 0

3 0 ,0 0 0

3 5 ,0 0 0

4 0 ,0 0 0

B 0 4

A 0 3

C 0 2

B 0 1

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

Fallacies of the Cost Based Optimizer 5

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

where b.company = 'B01' 50 TABLE ACCESS BY INDEX ROWID PS_JOB5
 50 INDEX RANGE SCAN PSBJOB5

Execution Plan from tkprof
call count cpu elapsed disk query current rows
Parse 1 0.47 0.473 21 359 5 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 37 0.48 0.47 420 567 0 530
total 39 0.95 0.94 441 926 5 530

Rows Row Source Operation
 530 SELECT STATEMENT GOAL: CHOOSE
 530 TABLE ACCESS BY INDEX ROWID PS_JOB5
 531 INDEX GOAL: ANALYZED (RANGE SCAN) OF 'PSBJOB5' (NON-UNIQUE)

In this example, the optimizer underestimated the cardinality by one order of magnitude. Had we used the predicate
“where b.company = 'C00'”, it would have overestimated the cardinality by a factor of 2. When compounded over
several query blocks of an access plan, or combined with other assumptions the effects of inaccurate cardinality
estimates due to skew can be profound.

Furthermore, it is reasonable to assume that the use of the column values in a predicate follows a distribution pattern
similar to that of the column values in the database. If a value occurs in more rows in the database, it is likely also
more often the subject of interest., therefore, averaged over all SQL, the optimizer is more likely to underestimate
cardinalities than to overestimate them.

REMEDY

Of course, the remedy for this fallacy is well known and documented: the use of histograms. Collecting a histogram
on the company column gives the optimizer better, if not exact, selectivity and thus cardinality estimates

Explain Plan
 card operation ___________________
 534 SELECT STATEMENT
 534 TABLE ACCESS FULL PS_JOB5

Execution Plan
call count cpu elapsed disk query current rows
Parse 1 0.17 0.15 25 424 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 37 0.24 0.22 912 943 15 530
total 39 0.41 0.37 937 1367 15 530

Rows Row Source Operation
 530 SELECT STATEMENT GOAL: CHOOSE
 530 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'PS_JOB5'

However, if the query uses a bind variable, we are back to where we started:
Select emplid, jobcode, salary
from ps_job5 b
where b.company = :b1

Explain Plan
 card operation
 61 SELECT STATEMENT
 61 TABLE ACCESS FULL PS_JOB5

Let me digress for a moment. Everywhere you hear and read that histograms are useless, being ignored by the CBO,
if a query uses bind variables. But look at the explain plan above. Notice that the cardinality is now 61. The
explanation for this is that the optimizer is not using the reciprocal of NDV for the column selectivity, but the value of

3 The parse time is so high because the 10053 event trace had been enabled.

6 Fallacies of the Cost Based Optimizer

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

the density statistic of the column. Without histograms, density is equal to 1/NDV, but with histograms density is
calculated differently. The column statistics after the histogram collection are:
table column NDV density bkts
PS_JOB5 COMPANY 200 6.0644E-03 67

10,000 * 6.0644e-3 = 60.644 rounded up to 61.

So histograms can make a difference even with queries that use bind variables. By using different numbers of buckets
one can influence the value of density and therefore the cardinality estimate.
For this sample table and its company column the following bucket–density values and resulting cardinality estimates
were observed:

buckets density card
10 1.0870E-02 109
25 8.5039E-03 86
50 7.4833E-03 75
75 6.0644E-03 61
90 5.5556E-03 56

100 5.0000E-03 50
150 3.3333E-03 50
199 2.5381E-03 50
200 5.0000E-05 50

It is obvious that density, and therefore selectivity and cardinality
estimates, decrease as the number of buckets increases. Density is
equal to 1/NDV at the midpoint (# buckets = NDV/2) and generally
greater than 1/NDV before and smaller after, although there can be
minor “aberrations” around the midpoint.
Note the big drop in density as the number of buckets increases
from 199 to 200. This is because at 200 buckets – the number of
distinct values of company – the histogram changes from a height
based to a value based histogram and density is calculated
differently again.

Note also how the reciprocal of NDV acts as a lower bound for the column selectivity and thus the estimated
cardinality, i.e selectivity = max[density, 1/NDV].

UNIFORM DISTRIBUTION OF COLUMN VALUES OVER THE RANGE OF VALUES

Still another case of uniform distribution assumption occurs with range predicates. To quote again from [2]“The
optimizer assumes that employee_id values are distributed evenly in the range between the lowest value and highest value.”

If that is not taken into consideration during development, this assumption may be violated “by design”. For example,
ACCOUNTING_PERIOD in the Peoplesoft Financials general ledger table has 15 distinct values with a range 0-999.
Period 0 holds opening balances, periods 1-12 hold the ledger entries for the months, and periods 998 and 999 are
used for special processing4. The frequencies for the periods 1-12 are roughly uniform and the selectivity of an
equality predicate is not far off:

accounting_period = n [n ε {1 .. 12}]
⇒ selectivity = 1/NDV = 1/15 = 6.6667e-2

However, the selectivity of a range predicate is underestimated because of the artificially high maximum range:
accounting_period between 1 and 12

⇒ selectivity⊗ = 12/(999-0) + 1/15 = 7.8679e-2

when in reality the selectivity should be close to 1

Paradoxically, according to the range selectivity formula, the selectivity of the range “accounting_period < 12” would
be (see [9])

⇒ selectivity = (12-0)/(999-0) = 1.2012e-2

much smaller than the equality selectivity, even though the expected cardinality, and therefore the selectivity should be
11 times as big. However, similar to the selectivity of a bind variable on a column with a histogram, the optimizer

4 This use of outliers is not uncommon in database design, especially by inexperienced designers.
⊗ The calculation of the selectivity differs from the formula published in Note 68992.1 “Predicate Selectivity”. It has

been deduced from the selectivity value observed in the CBO trace.

Fallacies of the Cost Based Optimizer 7

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

uses 1/NDV as a lower bound for any range selectivity. Yet, even at 1/15, the range selectivity of “accounting_period
< 12” is still severely underestimated.
One possible remedy would be to correct min or max outliers in the statistics. Changing the high value in the column
statistics for accounting_period to 14 yields much more realistic cardinality estimates as shown below in the
comparison of 10053 traces. The differences are highlighted.

select sum(posted_total_amt) from ps_ledger
where accounting_period between 1 and 12

Column: ACCOUNTING Col#: 11 Table: PS_LEDGER Alias: PS_LEDGER
 NDV: 15 NULLS: 0 DENS: 6.6667e-002 LO: 0 HI: 999
 TABLE: PS_LEDGER ORIG CDN: 745198 CMPTD CDN: 58632
Column: ACCOUNTING Col#: 11 Table: PS_LEDGER Alias: PS_LEDGER
 NDV: 15 NULLS: 0 DENS: 6.6667e-002 LO: 0 HI: 14
 TABLE: PS_LEDGER ORIG CDN: 745198 CMPTD CDN: 684873
The following selectivity calculation yields the observed values for both cases:
• with high_value = 999:

cardest = selectivity * cardbase = [max((12-1)/(999-0), 1/15) + min(12/(999-0), 2/15)] * 745,198
= [1.2012e-2 + 6.6667e-2] * 745,198 = 7.8679e-2 * 745,198 = 58,631.19
rounded up to 58,632

• with high_value = 14:
cardest = selectivity * cardbase = [max((12-1)/(14-0), 1/15) + min(12/(14-0), 2/15)] * 745,198

= [1.3333e-1 + 7.8571e-1] * 745,198 = 9.1905e-1 * 745,198 = 684,872.45
rounded up to 684,873

select sum(posted_total_amt) from ps_ledger
where accounting_period < 12

Column: ACCOUNTING Col#: 11 Table: PS_LEDGER Alias: PS_LEDGER
 NDV: 15 NULLS: 0 DENS: 6.6667e-002 LO: 0 HI: 999
 TABLE: PS_LEDGER ORIG CDN: 745198 CMPTD CDN: 49680
Column: ACCOUNTING Col#: 11 Table: PS_LEDGER Alias: PS_LEDGER
 NDV: 15 NULLS: 0 DENS: 6.6667e-002 LO: 0 HI: 14
 TABLE: PS_LEDGER ORIG CDN: 745198 CMPTD CDN: 638742
Here this selectivity calculation yields the observed values:

• with high_value = 999:
cardest = selectivity * cardbase = max[12/(999-0), 1/15] * 745,198 = max(1.2012e-2, 6.6667e-2)

= 6.6667e-2 * 745,198 = 49679.87 rounded up to 49,680

• with high_value = 14:
cardest = selectivity * cardbase = max[12/(14-0), 1/15] * 745,198 = max(8.5714e-1, 6.6667e-2)

= 8.5714e-1 * 745,198 = 638,741.14 rounded up to 638,742

It may be interesting to note that DB2 does not collect and store the minimum and maximum value of a column in
the catalog, but the 2nd lowest and 2nd highest values in an attempt to eliminate outliers. Evidently, that would not
have helped here since the 2nd highest value (998) would still have been an outlier.

REMEDY

The best and easiest remedy for a violation of this assumption is, of course, again a histogram on the column,
especially if the number of distinct values is less than 255 and a value-based histogram can be used.

See [10] and [11] for good information on histograms.

8 Fallacies of the Cost Based Optimizer

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

FALLACY II – THE PREDICATE INDEPENDENCE ASSUMPTION

When there is more than one predicate on a table, the selectivities of the individual predicates are combined according to
the following rules:[9]

P1 AND P2 S(P1&P2) = S(P1) * S(P2)
P1 OR P2 S(P1|P2) = S(P1) + S(P2) -[S(P1) * S(P2)]

These rules are the exact replicas of the rules for combining probabilities and are subject to the same restrictions: they are
only valid in this simple form if the events, in our case the predicates, are independent. As with the uniform distribution
assumption, this assumption is also often breached in practical applications. This violation is, however, more difficult to
detect.

Here is an example of the same query issued against two different tables:
select emplid, jobcode, salary
from ps_job1 b
where b.company = 'CCC'
 and b.paygroup = 'FGH';

250 rows selected.

select emplid, jobcode, salary
from ps_job2 b
where b.company = 'CCC'
 and b.paygroup = 'FGH';

2500 rows selected.

The explain plans are identical and the estimated cardinalities for table PS_JOB1, where the predicates are indeed
independend, match the actual cardinalities, whereas estimated and actual cardinalities for table PS_JOB2 differ by one
order of magnitude:

Explain Plan

 card operation
 251 SELECT STATEMENT
 251 TABLE ACCESS BY INDEX ROWID PS_JOB1
 251 INDEX RANGE SCAN PSBJOB1

Explain Plan

 card operation __________________________
 251 SELECT STATEMENT
 251 TABLE ACCESS BY INDEX ROWID PS_JOB2
 251 INDEX RANGE SCAN PSBJOB2

Execution Plan

 card operation
 250 SELECT STATEMENT
 250 TABLE ACCESS BY INDEX ROWID PS_JOB1
 251 INDEX RANGE SCAN PSBJOB1

Execution Plan

 card operation
 2500 SELECT STATEMENT
 2500 TABLE ACCESS BY INDEX ROWID PS_JOB2
 2501 INDEX RANGE SCAN PSBJOB2

and the corresponding tkprof details:
call count cpu elapsed disk query current rows
Parse 1 0.06 0.07 0 0 0 0
Exec 1 0 0 0 0 0 0
Fetch 18 0.03 0.03 252 272 0 250
total 20 0.09 0.1 252 272 0 250

call count cpu elapsed disk query current rows
Parse 1 0.06 0.08 0 0 0 0
Exec 1 0 0 0 0 0 0
Fetch 168 0.34 0.36 2518 2692 0 2500
total 170 0.4 0.44 2518 2692 0 2500

The statistics for both tables are up-to-date and virtually identical. The only significant difference is highlighted:

Table Statistics
table free used rows blks empty chain avg_row_len
PS_JOB1 8 65 50,000 4,547 3 0 317

table free used rows blks empty chain avg_row_len
PS_JOB2 8 65 50,000 4,547 3 0 317

Fallacies of the Cost Based Optimizer 9

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

Column Statistics5

table column NDV density bkts
PS_JOB1 EMPLID 10,000 1.0000E-04 1
PS_JOB1 JOBCODE 198 5.0505E-03 1
PS_JOB1 COMPANY 10 1.0000E-01 1
PS_JOB1 PAYGROUP 20 5.0000E-02 1
PS_JOB1 SALARY 49,597 2.0163E-05 1

table column NDV density bkts
PS_JOB2 EMPLID 10,000 1.0000E-04 1
PS_JOB2 JOBCODE 199 5.0251E-03 1
PS_JOB2 COMPANY 10 1.0000E-01 1
PS_JOB2 PAYGROUP 20 5.0000E-02 1
PS_JOB2 SALARY 49,848 2.0061E-05 1

Index Statistics
table index column NDV CLUF #LB lvl #LB/K #DB/K
PS_JOB1 PSBJOB1 200 .0000E+00 400 2 2 250
 COMPANY 10 1.0000E-01
 PAYGROUP 20 5.0000E-02

 PS_JOB1 U 50,000 .0000E+00 740 2 1 1
 EMPLID 10,000 1.0000E-04
 EMPL_RCD# 1 1.0000E+00
 EFFDT 21,842 4.5783E-05
 EFFSEQ 1,006 9.9404E-04

table index column NDV CLUF #LB lvl #LB/K #DB/K
PS_JOB2 PSBJOB2 20 .0000E+00 449 2 22 2,500
 COMPANY 10 1.0000E-01
 PAYGROUP 20 5.0000E-02

 PS_JOB2 U 50,000 .0000E+00 740 2 1 1
 EMPLID 10,000 1.0000E-04
 EMPL_RCD 1 1.0000E+00
 EFFDT 20,037 4.9908E-05
 EFFSEQ 1,006 9.9404E-04

In this case the index statistics clearly show that in table PS_JOB2 the attributes company and paygroup are not
independent. The PSBJOB2 index has only 20 distinct values rather than the expected 200 if the attributes were
independent (like PSBJOB1). Or, looking at it differently, each paygroup can occur in only one company since there are the
same number of company-paygroup combinations as there are paygroup values, which clearly violates the attribute
independence. However, if the index included another column, these conclusions could not be drawn just from the index
statistics.

REMEDY

There is no remedy for the incorrect selectivity and cardinality estimates due to predicates not being independent.
Where possible you can use hints or stored outlines to guide the optimizer to a better plan. If that is not possible the
only remedy in severe cases may be to adjust the statistics such that the CBO’s estimates better reflect the reality of
the query. The problem with that approach is that different statistics may be required for different predicate
combinations. That could be solved if Oracle gave us an extension of the stored outline model: the option to use
statistics from “stored statistics” which would be a stattab-statid combination.

5 Statistics for columns that do not appear in the query have been omitted.

10 Fallacies of the Cost Based Optimizer

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

FALLACY III – THE JOIN UNIFORMITY ASSUMPTION

The join uniformity assumption states that a row from one table is equally likely to join with any row from the second
table. It is essentially an extension of the uniform distribution assumption to two tables. This is the most difficult
assumption to verify, and, by corollary, to detect when it is violated. Nonetheless, there are again many situations in
which this assumption is violated. To understand how violation of this assumption affects the cardinality of a join we
look at a simple example of joining to tables with 10 rows each.

Example 1

First an example with join uniformity intact – we join a table with 10 distinct values to itself.

SQL> select 'A-'||a.n1, 'B-'||b.n1 2 from
t1 a, t1 b 3 where
a.n1 = b.n1;

Explain Plan execution results

 card operation
-------- -------------------------
 10 SELECT STATEMENT
 10 HASH JOIN
 10 TABLE ACCESS FULL T1
 10 TABLE ACCESS FULL T1

A-0 B-0
A-1 B-1
A-2 B-2
A-3 B-3
A-4 B-4
A-5 B-5
A-6 B-6
A-7 B-7
A-8 B-8
A-9 B-9

10 rows selected.

The join cardinality is determined by applying the join selectivity estimate to the cardinality of the cartesion join of the
two tables:

Join cardinality = cardA * cardB * join selectivity[9]

The join selectivity is estimated as the smaller of the individual selectivities of the join predicate for each table,
adjusted for nulls if necessary. Since attribute selectivity – under the uniform distribution assumption – is the
reciprocal of the number of distinct attribute values, the join selectivity becomes:

join selectivity = 1/max(ndvA, ndvB)6

This is how the estimated cardinality of 10 for the hash join above breaks down:
10 = cardA * cardB * /max(ndvA, ndvB) = 10 * 10 * 1/max(10,10) = 10 * 10 / 10

6 See metalink note 68992.1. For simplicity reasons, and since it doesn’t apply here, the adjustment for null values has

been omitted.

0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

Fallacies of the Cost Based Optimizer 11

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

0

0

0

0

0

0

0

00

0
0

0

1
2
3
4

1
2
3
4

Example 2

Now if we use a second table, also with 10 rows with distinct values, but only 5 of the values match any of the first
table, we get the following:

SQL> select 'A-'||a.n1, 'B-'||b.n1 2 from
t1 a, t2 b 3
where a.n1 = b.n1;

Explain Plan execution results

 card operation
-------- -------------------------
 10 SELECT STATEMENT
 10 HASH JOIN
 10 TABLE ACCESS FULL T1
 10 TABLE ACCESS FULL T2

A-5 B-5
A-6 B-6
A-7 B-7
A-8 B-8
A-9 B-9

5 rows selected.

The join cardinality estimate is calculated as above:
10 = cardA * cardB * /max(ndvA, ndvB) = 10 * 10 * 1/max(10,10) = 10 * 10 / 10

Obviously, it is wrong. It is overestimated by a factor of 2. This is a consequence of the violation of the join
uniformity assumption.

Example 3

One more example, this time of an underestimation of the join cardinality. Here the breach of the join uniformity is
related to a breach of the distribution uniformity. We again join a table with 10 rows to itself, but this time there are
only 5 distinct attribute values: 6 of the rows have the same attribute, the remaining 4 are distinct.

SQL> select 'A-'||a.n1, 'B-'||b.n1 2 from
t2 a, t2 b 3
where a.n1 = b.n1;

Explain Plan execution results

 card operation
-------- -----------------------
 20 SELECT STATEMENT
 20 HASH JOIN
 10 TABLE ACCESS FULL T2
 10 TABLE ACCESS FULL T2

A-0 B-0
A-0 B-0
A-0 B-0
…
A-0 B-0
A-1 B-1
A-2 B-2
A-3 B-3
A-4 B-4

40 rows selected.

The diagram shows the join arrows only for the first of the “0” attributes. There are 36 (6 * 6) combinations of “0”
attributes between the two sources. The remaining four attributes add another 4 for the total of 40. The join
cardinality estimate is calculated as above:

20 = cardA * cardB * /max(ndvA, ndvB) = 10 * 10 * 1/max(5,5) = 10 * 10 / 5

This time the join cardinality is underestimated by a factor of 2.

0
1
2
3
4
5
6
7
8
9

5
6
7
8
9

14

10
11
12
13

12 Fallacies of the Cost Based Optimizer

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

Example 4

Using the same table as in the first example, but loading 5 sets of data:

insert into t1(n1,n2,n3)
select mod(rownum,10),mod(rownum,5),mod(rownum,25)
from dba_objects where rownum <= 50;

insert into t2(n1,n2,n3)
select mod(rownum,10),mod(rownum,5),mod(rownum,25)
from dba_objects where rownum <= 50;

column NDV nulls density lo hi bkts
N1 10 0 1.0000E-01 0 9 1
N2 5 0 2.0000E-01 0 4 1
N3 25 0 4.0000E-02 0 24 1

select 'A.'||A.n1||'-B.'||B.n1
from t1 a, t2 b
where a.n1 = b.n1;

Explain Plan

 card operation
 250 SELECT STATEMENT
 250 HASH JOIN
 50 TABLE ACCESS FULL T1
 50 TABLE ACCESS FULL T2

Execution Plan

Rows Execution Plan
 0 SELECT STATEMENT GOAL: CHOOSE
 250 HASH JOIN
 50 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'T1'
 50 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'T2'

No surprise so far. But how many sql statements do you have that join two tables with nothing but the join
predicate(s). Consider adding a predicate:

select 'A.'||A.n1||'-B.'||B.n1
from t1 a, t2 b
where a.n1 = b.n1
and a.n2 = 5;

Explain Plan

 card operation
 50 SELECT STATEMENT
 50 HASH JOIN
 10 TABLE ACCESS FULL T1
 50 TABLE ACCESS FULL T2

Rows Execution Plan
 0 SELECT STATEMENT GOAL: CHOOSE
 50 HASH JOIN
 10 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'T1'
 50 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'T2'

The estimated cardinalities in explain plan still match the actual cardinalities of the execution plan.

Fallacies of the Cost Based Optimizer 13

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

Finally, consider the following sql:
select 'A.'||A.n1||'-B.'||B.n1
from t1 a, t2 b
where a.n1 = b.n1
and a.n1 = 5;

Since n1 has 10 distinct values in t1, the predicate “n1 = 5” reduces the estimated cardinality of t1 to 5 (50/10).
Because of the join equality predicate the same is true for t2 and thus the overall cardinality of the resultset is 25 – all
values are evenly distributed. And the execution plan shows exactly that.

Rows Execution Plan
 0 SELECT STATEMENT GOAL: CHOOSE
 25 HASH JOIN
 5 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'T1'
 5 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'T2'

In the explain plan, however, the optimizer underestimates the join cardinality by a factor of 5:
Explain Plan

 card operation
 5 SELECT STATEMENT
 5 HASH JOIN
 5 TABLE ACCESS FULL T1
 5 TABLE ACCESS FULL T2

Below is the extract from the 10053 event trace showing the relevant statistics and calculations. There is no
explanation, unfortunately, of how the optimizer arrived at the join selectivity of 0.2. In this case it should be 1 since
the selectivity has already been taken care of by the predicate and the applied transitive closure.

Table stats Table: T2 Alias: B
 TOTAL :: CDN: 50 NBLKS: 1 TABLE_SCAN_CST: 1 AVG_ROW_LEN: 8

Table stats Table: T1 Alias: A
 TOTAL :: CDN: 50 NBLKS: 1 TABLE_SCAN_CST: 1 AVG_ROW_LEN: 8

SINGLE TABLE ACCESS PATH
Column: N1 Col#: 1 Table: T1 Alias: A
 NDV: 10 NULLS: 0 DENS: 1.0000e-001 LO: 0 HI: 9
 TABLE: T1 ORIG CDN: 50 CMPTD CDN: 5
SINGLE TABLE ACCESS PATH
Column: N1 Col#: 1 Table: T2 Alias: B
 NDV: 10 NULLS: 0 DENS: 1.0000e-001 LO: 0 HI: 9
 TABLE: T2 ORIG CDN: 50 CMPTD CDN: 5
...
Join cardinality: 5 = outer (5) * inner (5) * sel (2.0000e-001) [flag=0]

This example, coupled with the observation that many attributes do not have a uniform distribution and that
predicates are no always independent, could explain many of the, sometimes severe, underestimations of join
cardinalities experienced.

Consider for example the following join of the ps_job5 table introduced earlier (page 4) joined to table
ps_pay_check5 with a similar distribution of company and paygroup columns. It is a simplified version of a real
query, not just a made-up example.

14 Fallacies of the Cost Based Optimizer

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

select A.COMPANY, A.PAYGROUP, SUM(B.SALARY)
from PS_PAY_CHECK5 A, PS_JOB5 B
where A.COMPANY = 'B01'
 and A.PAYCHECK_STATUS = 'B'
 and B.COMPANY=A.COMPANY
 and B.PAYGROUP=A.PAYGROUP
group by A.COMPANY, A.PAYGROUP
order by A.COMPANY, A.PAYGROUP

Table Statistics
table free used rows blks empty chain avg_row_len
PS_JOB5 10 40 10,000 911 317

table free used rows blks empty chain avg_row_len
PS_PAY_CHECK5 10 40 40,000 3,638 0 303

Column Statistics
table column NDV density bkts
PS_JOB5 COMPANY 200 5.0000E-03 1
PS_JOB5 PAYGROUP 300 3.3333E-03 1

table column NDV density bkts
PS_PAY_CHECK5 COMPANY 200 5.0000E-03 1
PS_PAY_CHECK5 PAYGROUP 300 3.3333E-03 1
PS_PAY_CHECK5 PAYCHECK_STATUS 5 2.0000E-01 1

Index Statistics
table index column NDV CLUF #LB lvl #LB/K #DB/K
PS_JOB5 PSBJOB5 8,636 1.5403E-01 55 1 1 1
 COMPANY 196 5.1020E-03 0
 PAYGROUP 301 3.3223E-03 0

 PS_JOB5 U 10,000 7.7016E-02 104 1 1 1
 EMPLID 10,000 1.0000E-04
 EMPL_RCD# 1 1.0000E+00
 EFFDT 9,224 1.0841E-04
 EFFSEQ 998 1.0020E-03

table index column NDV CLUF #LB lvl #LB/K #DB/K
PS_PAY_CHECK5 PSAPAY_CHECK5 10,000 .0000E+00 288 2 1 4
 EMPLID 12,771 7.8302E-05 0
 EMPL_RCD# 1 1.0000E+00 0

 PS_PAY_CHECK5 U 40,000 1.6501E-02 389 2 1 1
 COMPANY 200 5.0000E-03
 PAYGROUP 300 3.3333E-03
 PAY_END_DT 26 3.8462E-02
 OFF_CYCLE 3 3.3333E-01
 PAGE# 9 1.1111E-01
 LINE# 39 2.5641E-02

Explain Plan
 card operation

 1 SELECT STATEMENT
 1 SORT GROUP BY
 1 NESTED LOOPS
 50 TABLE ACCESS BY INDEX ROWID PS_JOB5
 50 INDEX RANGE SCAN PSBJOB5
 40 TABLE ACCESS BY INDEX ROWID PS_PAY_CHECK57

 40 INDEX RANGE SCAN PS_PAY_CHECK5

7 The estimated cardinality of 40 is the result of transitive closure:

cardest = selPAYCHECK_STATUS * selCOMPANY * cardbase = 1/5 * 1/200 * 40,000 = 40

Fallacies of the Cost Based Optimizer 15

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

Execution Plan
Rows Execution Plan

 0 SELECT STATEMENT GOAL: CHOOSE
 183 SORT (GROUP BY)
 1206 NESTED LOOPS
 531 TABLE ACCESS GOAL: ANALYZED (BY INDEX ROWID) OF 'PS_JOB5'
 531 INDEX GOAL: ANALYZED (RANGE SCAN) OF 'PSBJOB5' (NON-UNIQUE)
 1206 TABLE ACCESS GOAL: ANALYZED (BY INDEX ROWID) OF 'PS_PAY_CHECK5'
 6458 INDEX GOAL: ANALYZED (RANGE SCAN) OF 'PS_PAY_CHECK5' (UNIQUE)

call count cpu elapsed disk query current rows
Parse 1 0.02 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 14 0.29 0.31 2376 13963 0 183
total 16 0.31 0.33 2376 13963 0 183

Instead of the estimated 50 rows, 530 rows of table ps_job5 qualify for predicate “COMPANY = 'B01'” and the inner
table ps_pay_check5 is therefore scanned 530 times rather than the estimated 50 times. But the really big difference is
in the cardinality of the join result – 1206 rather than the estimated 1. In this example this underestimation of the join
cardinality only affects the cost estimate for the subsequent “group by” sort and has no effect on the overall access
plan. In queries that contain multiple joins, however, errors in the cardinality estimates of intermediate join results
propagate[12] and can – and do – lead to disastrous access plans.

Explain Plan with histograms

Next we examine what difference histograms make. After collecting histograms for all predicate columns on both
tables using the default 75 buckets, these are the relevant column statistics:

table column NDV density bkts
PS_PAY_CHECK5 COMPANY 200 6.2294E-03 67
PS_PAY_CHECK5 PAYGROUP 300 3.4257E-03 75
PS_PAY_CHECK5 PAYCHECK_STATUS 5 1.2500E-05 4

table column NDV density bkts
PS_JOB5 COMPANY 200 6.6044E-03 67
PS_JOB5 PAYGROUP 300 3.4257E-03 75

 card operation

 7 SELECT STATEMENT
 7 SORT GROUP BY
 7 HASH JOIN
 427 TABLE ACCESS FULL PS_PAY_CHECK5
 534 TABLE ACCESS FULL PS_JOB5

Rows Execution Plan

 0 SELECT STATEMENT GOAL: CHOOSE
 183 SORT (GROUP BY)
 1206 HASH JOIN
 414 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'PS_PAY_CHECK5'
 530 TABLE ACCESS GOAL: ANALYZED (FULL) OF 'PS_JOB5'

The histograms improved the cardinality estimates for the base tables to near accurate, leading to a different access
plan, but did little to correct the severe underestimation of the join cardinality.

“proof” that the optimizer completed transitive closure on the company predicate:
A.COMPANY = 'B01' and B.COMPANY = A.COMPANY ⇒ B.COMPANY = 'B01'

16 Fallacies of the Cost Based Optimizer

© Wolfgang Breitling, Centrex Consulting Corporation April 22, 2003

REMEDY

There is again no easy remedy for the incorrect selectivity and cardinality estimates resulting from a violation of the
join uniformity assumption. The same workarounds as for non-independent predicates apply: hints, outlines, and
setting rather than gathering statistics.

GLOSSARY

NDV number of distinct values. A.k.a. NUM_DISTINCT
Selectivity represents a fraction of rows from a row set.
FF (FILTER FACTOR) Another term for selectivity. Used especially for the combined

selectivity of multiple predicates.
Cardinality the number of rows in a row set.
Base cardinality the number of rows in a base table.
Effective cardinality the estimated number of rows that are selected from a base table. The

effective cardinality depends on the predicates specified on different
columns of a base table.

Join cardinality the number of rows produced when two row sets are joined together.
The join cardinality is the product of the cardinalities of two row sets,
multiplied by the selectivity of the join predicate.

Distinct cardinality the number of distinct values in a column of a row set.
Group cardinality the number of rows produced from a row set after the GROUP BY

operator is applied.

REFERENCES

1. Banchong Harangsri, John Shepherd, Anne H. H. Ngu: Query Size Estimation Using Systematic Sampling; proceedings
of the International Symposium on Cooperative Database Systems for Advanced Applications, 1996. Kyoto,
Japan.

2. Oracle 9i Database Performance Tuning Guide and Reference. 2002: Oracle Corporation.
3. Note:35934.1: Cost Based Optimizer - Common Misconceptions and Issues. metalink.oracle.com
4. Wolfgang Breitling: A Look under the Hood of Cbo: The 10053 Event. www.centrexcc.com
5. E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, 1970. 13(6): p.

377-387.
6. Cary Millsap: When to Use an Index. www.hotsos.com
7. P.G. Selinger, M.M. Astrahan, D.D. Chamberlain, R.A. Lorie, T.G. Price: Access Path Selection in a Relational

Database Management System; proceedings of the ACM SIGMOD International Conference on Management of
Data, 1979. Boston, USA.

8. George Kingsley Zipf: Human Behaviour and the Principle of Least Effort: An Introduction to Human Ecology. 1949,
Cambridge: Addison-Wesley.

9. Note:68992.1: Predicate Selectivity. metalink.oracle.com
10. Note:1031826.6: Histograms: An Overview. metalink.oracle.com
11. Steve Adams: Ixora News - April 2001. http://www.ixora.com.au/newsletter/2001_04.htm
12. Yannis E. Ioannidis, Stavros Christodoulakis: On the Propagation of Errors in the Size of Join Results; proceedings of the

ACM SIGMOD International Conference on Management of Data, 1991. Denver, CO.

http://www.centrexcc.com/
http://www.hotsos.com/
http://www.ixora.com.au/newsletter/2001_04.htm

	Explain Plan
	Explain Plan
	Execution Plan
	Execution Plan
	Execution Plan

	ndv
	FF (filter factor)

