
© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

SSQQLL TTUUNNIINNGG WWIITTHH SSTTAATTIISSTTIICCSS

Wolfgang Breitling, Centrex Consulting Corporation

This paper looks at the DBMS_STATS package and how it can be used – beyond just the gathering of statistics – in the
tuning effort, particularly where the SQL may not be changed for technical or license reasons. After introducing the
DBMS_STATS package, the paper demonstrates how it can be used to alter the access path – and the performance – of
a SQL without touching the SQL.
The findings presented are based on experience and tests with Oracle 8i (8.1.7) on Windows 2000, Linux Redhat 7.2,
HP-UX 11.0, and Compaq Tru64 5.1. Comments on changes in Oracle 9i are based on Oracle 9.2.0 on Windows
2000 and Linux Redhat 7.2.

THE DBMS_STATS PACKAGE

Gathering Statistics

There are four procedures to gather statistics on objects in the database:
• GATHER_DATABASE_STATS, GATHER_SCHEMA_STATS

gathers statistics for all objects in the database or in a schema. There are many options for special processing, e.g.
finding all objects without, or with stale statistics.

• GATHER_TABLE_STATS
gathers table and column statistics. It can gather statistics for individual partitions; the default is to gather global table
statistics and individual statistics for all partitions. Gather_table_stats is also the procedure to gather histograms.
Unlike analyze, gather_table_stats can do much of the statistics gathering in parallel, but there are limitations. Consult
the manual.
After gathering table and column stats, gather_table_stats can also gather statistics on all indexes of the table, but unlike
analyze does not do so by default (cascade => { t rue | fa lse })

• GATHER_INDEX_STATS
gathers index statistics. It does not execute in parallel. As with gather_table_stats, unless a partition name is specified,
global statistics and statistics for all individual partitions are gathered for a partitioned index.

All gathering procedures have the option to save the current statistics in a user statistics table before overwriting them.

A fifth procedure is new with Oracle 9i:

• GATHER_SYSTEM_STATS
gathers system statistics. The current values can be retrieved with GET_SYSTEM_STATS or viewed by querying
sys.stats_aux$
sreadtim average time to read single block (random read), in milliseconds
mreadtim average time to read an mbrc block at once (sequential read), in milliseconds
cpuspeed average number of CPU cycles per second, in millions
mbrc average multiblock read count for sequential read, in blocks
maxthr maximum I/O system throughput, in bytes/sec
slavethr average slave I/O throughput, in bytes/sec

Unlike the database object statistics gathering, gathering system statistics does not invalidate any SQL in the SGA and cause it
to be reparsed. However, Oracle9i now has a parameter in all the object statistics gathering procedures to not invalidate SQL
either (no_invalidate => { true | false })

There are corresponding DELETE_xxx_STATS procedures plus an additional DELETE_COLUMN_STATS procedure. With
DBMS_STATS it is now possible to delete the statistics for individual columns.

Getting or Setting Statistics

There are matching procedures to retrieve and set statistics for individual tables, indexes, and columns, as well as
retrieving and setting system statistics in Oracle 9i.

2 SQL Tuning with Statistics

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

USES OF DBMS_STATS BEYOND ANALYZE

Transferring Statistics
The DBMS_STATS package offers the ability to copy statistics between the dictionary and a user statistics table:
EXPORT_*_STATS copies the statistics from the dictionary to the user table and IMPORT_*_STATS does the reverse.

The “stattab” Table
The user statistics table must be built with the CREATE_STAT_TABLE procedure. There is also a DROP_STAT_TABLE procedure
which may be useful in a stored procedure, otherwise the table may just be dropped with a “drop table …” statement.

These are the columns of the stattab table:

Name Type Name Type
STATID VARCHAR2(30)
TYPE CHAR(1)
VERSION NUMBER
FLAGS NUMBER
D1 DATE
CH1 VARCHAR2(1000)
 C1 VARCHAR2(30)
C2 VARCHAR2(30)
C3 VARCHAR2(30)
C4 VARCHAR2(30)
C5 VARCHAR2(30)

N1 NUMBER
N2 NUMBER
N3 NUMBER
N4 NUMBER
N5 NUMBER
N6 NUMBER
N7 NUMBER
N8 NUMBER
N9 NUMBER
N10 NUMBER
N11 NUMBER
N12 NUMBER
R1 RAW(32)
R2 RAW(32)

In order to be able to use the stattab table to modify statistics, it is necessary to understand what the columns mean. The
following mapping is based on observation. Oracle does not document it: “The columns and types that compose this table
are not relevant as it should be accessed solely through the procedures in this package”.

STATID is the only documented column and is the user settable identifier. CH1 is currently unused and VERSION is always 4,
even for Oracle 9i. The meaning of the FLAGS bits is unknown, but bitand(flags,2) seems to be on if the object had
user_stats..

Except for the new system statistics, C5 is the owner and D1 is the LAST_ANALYZED date. TYPE identifies the type of object
and the meaning of the other columns depends on the TYPE:

TYPE ‘T’ TYPE ‘I’ TYPE ‘C’ TYPE ‘C’ histogram
C5
C1
C2
C3

N1
N2
N3
N4

OWNER
TABLE_NAME
PARTITION_NAME
SUBPARTITION_NAME

NUM_ROWS
BLOCKS
AVG_ROW_LEN
SAMPLE_SIZE

C5
C1
C2
C3

N1
N2
N3
N4
N5
N6
N7
N8

OWNER
INDEX_NAME
PARTITION_NAME
SUBPARTITION_NAME

NUM_ROWS
LEAF_BLOCKS
DISTINCT_KEYS
LEAF_BLOCKS_PER_KEY
DATA_BLOCKS_PER_KEY
CLUSTERING_FACTOR
BLEVEL
SAMPLE_SIZE

C5
C1
C2
C3
C4

N1
N2
N4
N5
N6
N7
N8

OWNER
TABLE_NAME
PARTITION_NAME
SUBPARTITION_NAME
COLUMN_NAME

NUM_DISTINCT
DENSITY
SAMPLE_SIZE
NUM_NULLS
LO_VALUE
HI_VALUE
AVG_COL_LEN

C5
C1
C2
C3
C4

N10
N11

OWNER
TABLE_NAME
PARTITION_NAME
SUBPARTITION_NAME
COLUMN_NAME

ENDPOINT_NUMBER
ENDPOINT_VALUE

The appendix contains view definitions on the user statistics table analogous to the DBA_xxx dictionary views.

SQL Tuning with Statistics 3

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

Backup and Rollback of Statistics Changes
The user statistics table and the EXPORT_* and IMPORT_* procedures make it possible to backup statistics; and restore them if
new statistics have undesirable effects on the optimizer’s plan choices.

The user statistics table and the EXPORT_* and IMPORT_* procedures also open new possibilities to work with statistics.
Since the user statistics table is an ordinary table, it can be exported and imported into another database and then IMPORTed
into that database’s dictionary to make it “look” to the optimizer like the original database. SQL statement plans can thus be
analyzed in a test database with less – or even no – data.

Another possibility is to actively manipulate the statistics to affect the optimizer’s access plans. Of course, this can only
work if the cost based optimizer is being used.

Phases of SQL Tuning
In the following we focus strictly on SQL tuning – improving the performance of a SQL statement, as opposed to application
tuning which takes into account the entire process, finding a way to achieve the desired business result through different,
more efficient means, possibly discovering that the particular problem statement or the entire process is unnecessary. This
narrow tuning focus breaks down into three phases:

1. Identify poorly performing SQL
2. Identify alternate – i.e. better – access plan
3. Persuade CBO to use this access plan

We will next look at a way to use DBMS_STATS in the third phase, particularly in cases where the SQL can not be modified.

Means to change an Access Plan

There are a number of ways to make the cost based optimizer choose a different the access plan. Listed by increasing
global impact:
• Change the statement
• Use hint

These two have only local impact, isolated to the changed statement. Obviously, both require the ability to change the
statement.

• Change statistics
all SQL that use or reference the component whose statistics are changed may be impacted. The big question, of course,
is: “How does one know which other SQL may be affected”? A possible technique is “Explain Plan Analysis”1

• Create or drop an index
all SQL that use the table may be impacted. Again, how does one know what those are? The same “Explain Plan
Analysis” addresses that and there are tools on the market which do that.

• Change initialization parameters
This is the most global change since all SQL may be impacted. Unless the parameter can be changed for just a session,
e.g. a batch job. Again, the “Explain Plan Analysis” aims at finding the SQL that are affected.

As the risk of changing the access paths of other SQL statements increases, so does the potential reward – rather than tuning
SQL by SQL, many statements could be improved with a single change.

We will next look at an example that uses option 3 “change statistics” to improve the performance of a SQL statement without
modifying the statement itself.

1 An idea by the author waiting to be realized.

4 SQL Tuning with Statistics

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

USING DBMS_STATS TO CHANGE AN ACCESS PLAN

Statistics affecting the CBO
In order to effectively use statistics in SQL tuning, one needs to know which statistics affect the CBO and how. The following
are the statistics used by the cost based optimizer in deciding on an access plan.

Table
num_rows, blocks, avg_row_len

Column
num_distinct, density, num_nulls, low_value, high_value
with histograms: buckets, endpoint_number, endpoint_value

Index
blevel, leaf_blocks, distinct_keys, avg_leaf_blocks_per_key, avg_data_blocks_per_key, clustering_factor

Rather than setting statistics directly, which would be possible with the dbms_stats.set_xxx_stats procedures, I recommend
exporting the statistics, changing the value(s) in the stattab table and then re-importing the changed statistics back into the
dictionary. Setting statistics directly sets the flag USER_STATS to ‘YES’. It is unknown if or how that affects the optimizer.

Regardless of which method is used to alter statistics, ALWAYS, ALWAYS back up the current statistics into a stattab table
so that they can be restored if the change has undesirable effects:

DBMS_STATS.EXPORT_xxx_STATS (
 ownname => ‘abc’,
 …,
 stattab => ‘stats_table’,
 statid => ‘bkup’);

PUTTING IT TO WORK

The sql
This is the SQL we’ll be using to demonstrate the technique – and the effect of tuning with statistics:

SELECT A.ACCOUNT, SUM(A.POSTED_TOTAL_AMT)
from PS_PCR_LEDSUM_OP A
 , PSTREESELECT06 L1
 , PSTREESELECT10 L
where A.LEDGER = 'XXXXXX'
 and A.FISCAL_YEAR = 1997
 and A.ACCOUNTING_PERIOD BETWEEN 1 and 12
 and A.CURRENCY_CD IN (' ', 'CAD')
 and A.STATISTICS_CODE = ' '
 and A.PCR_TREENODE_DEPT = 'YYYYYY'
 and L1.SELECTOR_NUM = 15101
 and A.ACCOUNT = L1.RANGE_FROM_06
 and (L1.TREE_NODE_NUM BETWEEN 1968278454 and 1968301256
 OR L1.TREE_NODE_NUM BETWEEN 1968301263 and 1968301270
 OR L1.TREE_NODE_NUM BETWEEN 1968867729 and 196888696
 OR L1.TREE_NODE_NUM BETWEEN 1969156312 and 1969207615)
 and L.SELECTOR_NUM = 15109
 and A.DEPTID = L.RANGE_FROM_10
 and L.TREE_NODE_NUM BETWEEN 1692307684 and 1794871785
group by A.ACCOUNT

SQL Tuning with Statistics 5

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

The “Before”

And this is the corresponding explain plan:
 cost card operation
 130 1 SELECT STATEMENT
 130 1 SORT GROUP BY
 128 1 NESTED LOOPS
 125 1 NESTED LOOPS
 50 1 INDEX RANGE SCAN PSAPSTREESELECT06
 75 1,753 TABLE ACCESS BY LOCAL INDEX ROWID PS_PCR_LEDSUM_OP

PARTITION: START=5 STOP=5
 2 1,753 INDEX RANGE SCAN PS_PCR_LEDSUM_OP_ACC PARTITION: START=5 STOP=5
 3 456 INDEX RANGE SCAN PSBPSTREESELECT10

From the plan alone one can not tell if it is good or bad. There is just no way. Do not let anyone tell you otherwise.

The only way is to test it. Following are the execution statistics for five consecutive calls – to eliminate the effects of blocks
being, or not being, in the buffer pool. A sql trace was enabled to get the row counts.

hash call count cpu elapsed disk query current rows

3280272888 Parse 1 0.15 0.17? 0 0 0 0
3280272888 Exec 1 0 0 0 0 0 0
3280272888 Fetch 4 2.03 19.54 15162 22909 0 34
3280272888 total 6 2.18 19.71 15162 22909 0 34
3280272888 Parse 1 0 0 0 0 0 0
3280272888 Exec 1 0 0 0 0 0 0
3280272888 Fetch 4 1.19 1.21 12310 22909 0 34
3280272888 total 6 1.19 1.21 12310 22909 0 34
3280272888 Parse 1 0 0 0 0 0 0
3280272888 Exec 1 0 0 0 0 0 0
3280272888 Fetch 4 1.14 1.19 11413 22909 0 34
3280272888 total 6 1.14 1.19 11413 22909 0 34
3280272888 Parse 1 0 0 0 0 0 0
3280272888 Exec 1 0 0 0 0 0 0
3280272888 Fetch 4 1.08 1.08 10957 22909 0 34
3280272888 total 6 1.08 1.08 10957 22909 0 34
3280272888 Parse 1 0 0 0 0 0 0
3280272888 Exec 1 0 0 0 0 0 0
3280272888 Fetch 4 1.03 1.03 10098 22909 0 34
3280272888 total 6 1.03 1.03 10098 22909 0 34

? The parse times in the 1st call are so high because the 10053 trace event was enabled, capturing the CBO trace.

6 SQL Tuning with Statistics

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

When contrasting the cardinality estimates from the explain plan to the actual row counts, the problem with the plan
becomes apparent: the row count of 1125 instead of the estimated cardinality of 1 of the join of PSTREESELECT06
and PS_PCR_LEDSUM_OP which is then used as the driving outer “table” of the next NL join.
The index range scan of PSBPSTREESELECT10 is then done 1125 times rather than the estimated once.

 card
 1
 1
 1
 11
 11
1,753
1,753
 456

 Rows Execution Plan
 0 SELECT STATEMENT GOAL: CHOOSE
 34 SORT GROUP BY
 892 NESTED LOOPS
 11,,112255 NESTED LOOPS
 115511 INDEX RANGE SCAN PSAPSTREESELECT06
 1274 TABLE ACCESS BY LOCAL INDEX ROWID PS_PCR_LEDSUM_OP

PARTITION: START=5 STOP=5
 31,538 INDEX RANGE SCAN PS_PCR_LEDSUM_OP_ACC

PARTITION: START=5 STOP=5
 892 INDEX RANGE SCAN PSBPSTREESELECT10

Going one line down, we realize that the join cardinality of 1 is largely the result of the estimated cardinality of 1 of table
PSTREESELECT06. The two relevant lines out of the 10053 CBO trace are included:

Join cardinality: 1 = outer (1) * inner (1753) * sel (7.0522e-04)
TABLE: PSTREESELECT06 ORIG CDN: 154506 CMPTD CDN: 1

If this sounds too easy then it is because hindsight is 20/20. The actual analysis took a bit longer and involved a more
extensive analysis of the 10053 trace.

The Process
In order to correct, i.e. increase, the optimizer’s cardinality estimate for the PSTREESELECT06 table we need to lower the
selectivity of one or more of the columns used in the predicate. A way to do that is to modify the density statistic of the
column. The two predicates on table PSTREESELECT06 are SELECTOR_NUM and TREE_NODE_NUM. SELECTOR_NUM is used in
an equal predicate and since there is a histogram on it, the optimizer will use the histogram data to rather accurately calculate
the selectivity of the predicate. TREE_NODE_NUM on the other hand is used in “or”ed range scans and here the density comes
into play for determining the predicate selectivity. Since we decided the cardinality was too low, the selectivity is too low as
well (estimated cardinality = selectivity * base cardinality)2. We therefore elect to increase the density by a factor of 10 and
then re-import the changed statistics into the dictionary:

Before we do anything, however, we make a backup of the statistics.

DBMS_STATS.EXPORT_TABLE_STATS (
ownname => SYS_CONTEXT ('USERENV', 'CURRENT_SCHEMA'),
tabname => ‘PSTREESELECT06’,
 stattab => ‘STATS_TABLE’,
statid => ‘BKUP’,
cascade => TRUE);

2 There is an apparent paradox here which stems from a dual use of the word selectivity. The selectivity value –

another, better, term is filter factor – is a number between 0 and 1and a small selectivity VALUE corresponds to a
high SELECTIVITY of the predicate, i.e. selecting FEW rows. It is similar with the word performance: if you make
something faster, did you increase or decrease the performance?

SQL Tuning with Statistics 7

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

Then we make the working copy

DBMS_STATS.EXPORT_TABLE_STATS (
ownname => SYS_CONTEXT ('USERENV', 'CURRENT_SCHEMA'),
tabname => ‘PSTREESELECT06’,
 stattab => ‘STATS_TABLE’,
statid => ‘WORK’,
cascade => TRUE);

table column NDV density bkts

PSTREESELECT06 SELECTOR_NUM 158 5.8728E-02 5
PSTREESELECT06 TREE_NODE_NUM 2,619 5.5647E-03 5
PSTREESELECT06 RANGE_FROM_06 10,152 9.8503E-05 1
PSTREESELECT06 RANGE_TO_06 10,152 9.8503E-05 1

update stats_tab_columns3

set density = 10*density
where statid = ‘WORK’
 and table_name = ‘PSTREESELECT06’
 and column_name = ‘TREE_NODE_NUM’;

After changing the density value we copy the statistics back into the dictionary.

DBMS_STATS.IMPORT_TABLE_STATS (
ownname => SYS_CONTEXT ('USERENV', 'CURRENT_SCHEMA'),
tabname => ‘PSTREESELECT06’,
stattab => ‘STATS_TABLE’,
statid => ‘WORK’,
cascade => TRUE);

The column statistics report shows the changed statistics

table column NDV density bkts

PSTREESELECT06 SELECTOR_NUM 158 5.8728E-02 5
PSTREESELECT06 TREE_NODE_NUM 2,619 5.5647E-02 5
PSTREESELECT06 RANGE_FROM_06 10,152 9.8503E-05 1
PSTREESELECT06 RANGE_TO_06 10,152 9.8503E-05 1

The “After”

And this is the explain plan after the change in density of PSTREESELECT06.TREE_NODE_NUM.

 cost card operation

1,215 64 SELECT STATEMENT
1,215 64 SORT GROUP BY
1,209 64 HASH JOIN
 4 273 INDEX RANGE SCAN PSAPSTREESELECT10
1,204 359 HASH JOIN
 50 290 INDEX RANGE SCAN PSAPSTREESELECT06
1,153 1,753 TABLE ACCESS BY LOCAL INDEX ROWID PS_PCR_LEDSUM_OP PARTITION: START=5 STOP=5
 59 1,753 INDEX RANGE SCAN PS_PCR_LEDSUM_OP_TDEP PARTITION: START=5 STOP=5

The plan DID change as a result of the statistics change even though the base access paths are the same as before:

3 See the appendix for the view definition

8 SQL Tuning with Statistics

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

• an index range scan on the (1997) partition of PS_PCR_LEDSUM_OP – although using a different index
• an index range scan of PSTREESELECT10 – again using a different index now
• an index range scan of PSTREESELECT06, the table where we changed a column density, using the same index as before.

The big difference are the two hash joins in place of the nested loop joins, predicated by the higher join cardinalities. The
estimated cardinality of PSTREESELECT06, and the resulting join cardinality estimates from the 10053 trace show that:

TABLE: PSTREESELECT06 ORIG CDN: 154506 CMPTD CDN: 290Join cardinality: 359
= outer (290) * inner (1753) * sel (7.0522e-04)

Join cardinality: 64 = outer (359) * inner (273) * sel (6.5703e-04)

But again, just from looking at the plan one can not tell if it is better. The higher cost (1215 vs. 130) ought to indicate that it
is worse. The only way to find out is to execute the SQL. Again we use 5 consecutive runs to eliminate buffer pool issues:

hash call count cpu elapsed disk query current rows
3280272888 Parse 1 0.23 0.24 0 0 0 0
3280272888 Exec 1 0 0 0 0 0 0
3280272888 Fetch 4 0.35 0.51 248 655 0 34
3280272888 total 6 0.58 0.75 248 655 0 34
3280272888 Parse 1 0 0 0 0 0 0
3280272888 Exec 1 0 0 0 0 0 0
3280272888 Fetch 4 0.18 0.19 29 655 0 34
3280272888 total 6 0.18 0.19 29 655 0 34
3280272888 Parse 1 0 0 0 0 0 0
3280272888 Exec 1 0 0.01 0 0 0 0
3280272888 Fetch 4 0.19 0.19 0 655 0 34
3280272888 total 6 0.19 0.2 0 655 0 34
3280272888 Parse 1 0 0 0 0 0 0
3280272888 Exec 1 0.01 0 0 0 0 0
3280272888 Fetch 4 0.18 0.2 0 655 0 34
3280272888 total 6 0.19 0.2 0 655 0 34
3280272888 Parse 1 0 0 0 0 0 0
3280272888 Exec 1 0 0.01 0 0 0 0
3280272888 Fetch 4 0.19 0.19 0 655 0 34
3280272888 total 6 0.19 0.2 0 655 0 34

The first execution may have benefited from the 5 prior executions when we compare it to the 1st execution of the old
plan. But the 2nd through 5th executions are also consistently a second faster than those using the previous plan.
Note that the hash_value of the SQL did not change – we changed the statistics, not the SQL.
If we compare further we see a drop in query (consistent) reads: 655 compared to the 22909 of the prior plan and also a big
drop in physical reads: the 3rd through 5th SQL did not incur any physical IO.

It should be mentioned that these tests ran in a single user mode – nothing else was running in the database at the time. But
other processes were running on the server – backups for other databases for example.

SQL Tuning with Statistics 9

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

For completeness, let us compare the estimated cardinalities of the new plan with the actual row counts:

 card

 64
 64
 64
 273
 359
 290
 1,753
 1,753

 Rows Execution Plan
------- --
 0 SELECT STATEMENT GOAL: CHOOSE
 34 SORT GROUP BY
 892 HASH JOIN
 150 INDEX RANGE SCAN PSAPSTREESELECT06
 8752 HASH JOIN
 9237 INDEX RANGE SCAN PSAPSTREESELECT10
 10524 TABLE ACCESS BY LOCAL INDEX ROWID PS_PCR_LEDSUM_OP

PARTITION: START=5 STOP=5
 12842 INDEX RANGE SCAN PS_PCR_LEDSUM_OP_TDEP PARTITION: START=5 STOP=5

We can see that there are still sizeable numerical differences, but the relative differences are much smaller now than
before.

What does that mean? It means that with the modified statistics, the optimizer’s cardinality estimates are closer to
reality. The optimizer does an excellent job in choosing a good access path – provided its estimates are accurate.
Contrary to popular belief and widespread practice, constantly updated statistics do not guarantee accurate estimates4.
Sometimes you need to give the optimizer a helping hand – be it through a hint or, as in this case, through a statistics
“white lie”.

APPENDIX

STATS_xxx Views

create or replace view STATS_TABLES (
STATID

,OWNER
,TABLE_NAME
,NUM_ROWS

,BLOCKS
,AVG_ROW_LEN

,SAMPLE_SIZE
,LAST_ANALYZED)

grant select on STATS_TABLES to public;

as
select statid
,c5
,c1
,n1
,n2
,n3
,n4
,d1
from stats_table where type='T' and c2 is null
and c5 = SYS_CONTEXT ('USERENV','CURRENT_SCHEMA');

create or replace view STATS_INDEXES (
STATID

,OWNER
,INDEX_NAME

,BLEVEL
,LEAF_BLOCKS

,DISTINCT_KEYS
,AVG_LEAF_BLOCKS_PER_KEY
,AVG_DATA_BLOCKS_PER_KEY

,CLUSTERING_FACTOR
,NUM_ROWS

,SAMPLE_SIZE
,LAST_ANALYZED)

grant select on STATS_INDEXES to public;

as
select statid
,c5
,c1
,n7
,n2
,n3
,n4
,n5
,n6
,n1
,n8
,d1
from stats_table where type='I' and c2 is null
and c5 = SYS_CONTEXT ('USERENV','CURRENT_SCHEMA');

4 See [2] for an explanation for some of the reasons why.

10 SQL Tuning with Statistics

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

create or replace view STATS_TAB_COLUMNS (
STATID

,OWNER
,TABLE_NAME

,COLUMN_NAME
,NUM_DISTINCT

,DENSITY
,N3

,LOW_VALUE
,HIGH_VALUE
,NUM_NULLS

,AVG_COL_LEN
,SAMPLE_SIZE

,LAST_ANALYZED)

grant select on STATS_TAB_COLUMNS to public;

as
select statid
,c5
,c1
,c4
,n1
,n2
,n3
,n6
,n7
,n5
,n8
,n4
,d1
from stats_table where type='C' and c2 is null
and c5 = SYS_CONTEXT ('USERENV','CURRENT_SCHEMA');

create or replace view STATS_TAB_PARTITIONS (
statid

,OWNER
,TABLE_NAME

,PARTITION_NAME
,SUBPARTITION_NAME

,NUM_ROWS
,BLOCKS

,AVG_ROW_LEN
,SAMPLE_SIZE

,LAST_ANALYZED)

grant select on STATS_TAB_PARTITIONS to public;

as
select statid
,c5
,c1
,c2
,c3
,n1
,n2
,n3
,n4
,d1
from stats_table where type='T' and c2 is not null
and c5 = SYS_CONTEXT ('USERENV','CURRENT_SCHEMA');

create or replace view STATS_IND_PARTITIONS (
STATID

,OWNER
,INDEX_NAME

,PARTITION_NAME
,SUBPARTITION_NAME

,BLEVEL
,LEAF_BLOCKS

,DISTINCT_KEYS
,AVG_LEAF_BLOCKS_PER_KEY
,AVG_DATA_BLOCKS_PER_KEY

,CLUSTERING_FACTOR
,NUM_ROWS

,SAMPLE_SIZE
,LAST_ANALYZED)

grant select on STATS_IND_PARTITIONS to public;

as
select statid
,c5
,c1
,c2
,c3
,n7
,n2
,n3
,n4
,n5
,n6
,n1
,n8
,d1
from stats_table where type='I' and c2 is not null;
and c5 = SYS_CONTEXT ('USERENV','CURRENT_SCHEMA')

SQL Tuning with Statistics 11

© Wolfgang Breitling, Centrex Consulting Corporation April 21, 2003

create or replace view STATS_PART_COL_STATISTICS (
STATID

,OWNER
,TABLE_NAME

,PARTITION_NAME
,SUBPARTITION_NAME

,COLUMN_NAME
,NUM_DISTINCT

,DENSITY
,N3

,LOW_VALUE
,HIGH_VALUE
,NUM_NULLS

,AVG_COL_LEN
,SAMPLE_SIZE

,LAST_ANALYZED)

grant select on STATS_PART_COL_STATISTICS to public;

as
select statid
,c5
,c1
,c2
,c3
,c4
,n1
,n2
,n3
,n6
,n7
,n5
,n8
,n4
,d1
from stats_table where type='C' and c2 is not null;
and c5 = SYS_CONTEXT ('USERENV','CURRENT_SCHEMA')

REFERENCES

[1] Wolfgang Breitling. A Look under the Hood of CBO - the 10053 Event. in Proceedings of the 2003 Hotsos
Symposium on Oracle® System Performance. Feb 9–12, 2003. Dallas, TX. (http://www.centrexcc.com)

[2] Wolfgang Breitling. Fallacies of the Cost Based Optimizer. in Proceedings of the 2003 Hotsos Symposium on
Oracle® System Performance. Feb 9–12, 2003. Dallas, TX. (http://www.centrexcc.com)

Metalink Notes:
114671.1 Gathering Statistics for the Cost Based Optimizer
130899.1 How to Set User-Defined Statistics Instead of RDBMS Statistics
122009.1 How to Retrieve Statistics Generated by ANALYZE SQL Statement
130688.1 Report Statistics for a Table, it's columns and it's indexes with DBMS_STATS
130911.1 How to Determine if Dictionary Statistics are RDBMS-Generated or User-Defined
102334.1 How to automate ANALYZE TABLE when changes occur on tables
1074354.6 DBMS_STATS.CREATE_STAT_TABLE: What Do Table Columns Mean?
117203.1 How to Use DBMS_STATS to Move Statistics to a Different Database
149560.1 Collect and Display System Statistics (CPU and IO) for CBO usage
153761.1 Scaling the system to improve CBO optimizer

http://www.centrexcc.com/
http://www.centrexcc.com/

	NameType

