
© Wolfgang Breitling, Centrex Consulting Corporation 1

TTUUNNIINNGG BBYY CCAARRDDIINNAALLIITTYY FFEEEEDDBBAACCKK
MMEETTHHOODD AANNDD EEXXAAMMPPLLEESS

Wolfgang Breitlingi
Centrex Consulting Corporation

The presentation introduces a method of tuning which is based on the premise that whenever the CBO chooses a bad
plan it can be traced back to an error in the estimation of the cardinality of one or more row sources.

THE EMPIRICAL BASIS FOR THE METHOD
As the caption1 implies, the method grew over time out of observations and the need to tune SQL without being able
to change it. At the 2004 Hotsos Symposium I
presented a testcase to demonstrate the danger of
gathering statistics indiscriminately:2
A. Baseline
B. Insert 1 row into 40,000 row table
C. Re-execute SQL
D. Analyze 40,000 row table
E. Re-execute SQL
F. Execute SQL with OICA=25, OIC=903
G. Execute SQL after TCF tuning
The SQL at all five execution points is identical. All
that changes between executions are the table
statistics, or, at point F, optimizer parameters.
As execution points A, C, E, and eventually F
show, the change in performance was not due to the change in data volume, but entirely due to changes in statistics.
The testcase also clearly demonstrates the power of statistics and how important it is to have the right statistics.
Note that right is not synonymous to fresh or up-to-date.

OBSERVATION
IF AN ACCESS PLAN IS NOT OPTIMAL IT IS BECAUSE THE CARDINALITY ESTIMATE FOR ONE OR MORE OF

THE ROW SOURCES IS GROSSLY INCORRECT.

Just recently I learned that this observation is corroborated by members of Oracle’s optimizer development team[1]:
“● The most common reason for poor execution plans with perceived “good” statistics is inaccurate row count

estimates
– This leads to bad access path selection
– This leads to bad join method selection
– This leads to bad join order selection

● In summary one bad row count estimate can cascade into a very poor plan”
The usual suggestion – if not to say knee-jerk reaction – is to re-analyze all tables, possibly with a higher sampling
percentage. However,
a) Remember Dave Ensor’s paradox: “It is only safe to gather statistics when to do so will make no difference”

viz the performance chart above for time points B-C-D-E.

1 em•pir•i•cal adj. “originating in or based on observation or experience.” (http://www.m-w.com/dictionary/empirical)
2 The chart show the times captured for three separate runs and their average times, which are highlighted and labeled.
3 This step was only included to muffle the many proponents of this kind of “silver bullet”.

5 5 .2 6

1 7 .0 9

1 0 5 .3 0

6 3 .1 7

5 4 .5 9

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

A C E F G

2 © Wolfgang Breitling, Centrex Consulting Corporation

b) Outdated statistics on base tables and columns are only one possible reason for inaccurate cardinality estimates,
especially of intermediate join results

c) There are many reasons – i.e. assumptions – in the optimizer’s logic which lead to over- or under-inflated
estimates when violated, despite accurate statistics on the base tables and columns.

d) Violation of the predicate independence assumption[2] in particular, and its cousin, the join uniformity
assumption, lead to cardinality estimates which are orders of magnitude too low, resulting in disastrous NL join
plans. And setting optimizer_index_cost_adj to a value < 100 does nothing in those cases except entrench the
NL choice even more firmly.

Note that the inverse of the above observation
● bad plan => cardinality estimate is wrong

do not follow from logic:
● cardinality estimate is wrong => bad plan
● cardinality estimate is correct => good plan

However, I do formulate the

CONJECTURE
THE CBO DOES AN EXCELLENT JOB OF FINDING THE BEST ACCESS PLAN FOR A GIVEN SQL PROVIDED

IT IS ABLE TO ACCURATELY ESTIMATE THE CARDINALITIES OF THE ROW SOURCES IN THE PLAN

Unlike other tuning methodologies and practices which often attempt to coerce the optimizer into a particular access
plan, tuning by cardinality feedback (TCF) looks for discrepancies between estimated and real row source cardinalities
of an execution plan and strives to find what caused the CBO to err in calculating the estimates and choose a
(presumably) sub-optimal access plan. Once the answer to that question is found, the next goal is to find a way to
remedy the reason for the miscalculation, but ultimately get out of the way and let the CBO do its job again, trusting it
to find a better plan itself based on the corrected, more accurate estimates.
The methodology is thus not dissimilar to that of profiles generated by DBMS_SQLTUNE. Profiles give the CBO
adjustment factors (see page 11) to correct the row source cardinality estimates while TCF aims to give the CBO
information such that the row source cardinality estimates become more accurate in the first place.

TUNING BY CARDINALITY FEEDBACK

THE METHOD

The SQL for it – and all the other examples – can be found in the appendix.
 List the explain plan with the cardinality projections

– from explain or, preferably, from v$sql_plan
 Get the actual row counts

– from a SQL trace or from v$sql_plan_statistics.
Make sure the actual plan is identical to the explain plan!
Something that is automatically the case if you use v$sql_plan and v$sql_plan_statistics.

© Wolfgang Breitling, Centrex Consulting Corporation 3

 Look for the first (innermost) row source where the ratio of actual/estimated cardinality is orders of magnitude
– usually at least in the 100s

 Ratio Rows card operation

504.6
534.9

1.0
858.1
353.3

1.0
3.0
1.6
2.7
1.0

2

6,274
13,120
208,620

15
44,621
14,131

5
40,000
44,621
74,101
13,679
9,860
4,930
4,930
20,022
7,750
10,011

 2 SELECT STATEMENT
 2 SORT GROUP BY
 FILTER
 26 HASH JOIN
 390 HASH JOIN
 15 TABLE ACCESS FULL PS_RETROPAYPGM_TBL
 52 NESTED LOOPS
 40 HASH JOIN
 5 TABLE ACCESS FULL PS_PAY_CALENDAR
 13,334 TABLE ACCESS FULL WB_JOB
 27,456 TABLE ACCESS BY INDEX ROWID WB_RETROPAY_EARNS
 27,456 INDEX RANGE SCAN WB0RETROPAY_EARNS
 13,679 TABLE ACCESS FULL PS_RETROPAY_RQST
 1 SORT AGGREGATE
 1 FIRST ROW
 1 INDEX RANGE SCAN (MIN/MAX) WB_JOB
 1 SORT AGGREGATE
 1 FIRST ROW
 1 INDEX RANGE SCAN (MIN/MAX) WB_JOB

 Find the predicates in the SQL for the tables that contribute to the row source with the miscalculated cardinality
and look for violated assumptions:
 Uniform distribution
 Predicate independence
 Join uniformity

The innermost row source with the largest ratio of discrepancy is the hash join of PS_PAY_CALENDAR and WB_JOB.
So we are checking the column statistics for the two tables
table column NDV density lo hi bkts
PS_PAY_CALENDAR COMPANY 11 9.0909E-02 ACE TES 1
 PAYGROUP 15 6.6667E-02 ACA TEP 1
 PAY_END_DT 160 6.2500E-03 1998-01-18 2004-02-22 1
 RUN_ID 240 4.1667E-03 PP2 1
 PAY_OFF_CYCLE_CAL 2 5.0000E-01 N Y 1
 PAY_CONFIRM_RUN 2 5.0000E-01 N Y 1

WB_JOB EMPLID 26,167 3.8216E-05 000036 041530 1
 EMPL_RCD# 1 1.0000E+00 0 0 1
 EFFDT 10 1.0000E-01 1995-01-01 2004-02-01 1
 EFFSEQ 3 3.3333E-01 1 3 1
 COMPANY 10 1.0000E-01 ACE TES 1
 PAYGROUP 14 7.1429E-02 ACA TEP 1

If emplid, effdt and effseq, which form a unique key on wb_job4, were independent then wb_job would need to have
26,167 * 10 * 3 = 785,010 rows. To counteract the estimate miscalculation due to the violated predicate independence
assumption, we neutralize the effdt and effseq cardinalities by setting them to 1.
While this ultimately is probably an accurate root cause analysis, the mechanics of how that results in the incorrect
row source cardinality estimate is more complicated and may contain an optimizer deficiency/bug. If it were a simple
case of predicate dependency then using optimizer_dynamic_sampling=4 (or higher) should detect it, which it does
not.
In this case there is virtually no danger of side effects as it is extremely unlikely that EFFDT, much less EFFSEQ, will be
used by themselves as predicates in a query.
The optimizer uses sometimes density, sometimes NDV – and other times yet other statistics – when estimating
predicate selectivity.[3]

4 Technically, there is a 4th column in the unique key, but that has the same value for all rows in this instance

4 © Wolfgang Breitling, Centrex Consulting Corporation

When modifying column statistics I try to leave the real NDV in place if possible and only change the density. This
makes it “obvious” that the statistics were modified after gathering.
Note: set_column_stats(distcnt=>) not only changes num_distinct, but also density to 1/distcnt, while

set_column_stats(density=>) only changes density, leaving num_distinct unchanged.
Adjust the column statistics to counteract the violated assumption(s):
 DBMS_STATS.SET_COLUMN_STATS('SCOTT','WB_JOB','EFFDT',density => 1);
 DBMS_STATS.SET_COLUMN_STATS('SCOTT','WB_JOB','EFFSEQ',density => 1);

table column NDV density lo hi bkts
WB_JOB EMPLID 26,167 3.8216E-05 000036 041530 1
 EMPL_RCD# 1 1.0000E+00 0 0 1
 EFFDT 10 1.0000E+00 1995-01-01 2004-02-01 1
 EFFSEQ 3 1.0000E+00 1 3 1
 COMPANY 10 1.0000E-01 ACE TES 1
 PAYGROUP 14 7.1429E-02 ACA TEP 1

The plan with row source cardinality estimates, actuals and ratios after modifying the statistics:

 Ratio Rows card operation

17.5
1.0

28.1
29.8
9.9
1.0
1.0
4.5
1.0

2

6,274
13,120

15
42,054
44,621
14,130

5
40,000

122,813
13,679
11,212
5,606
5,606

17,374
6,418
8,687

 2 SELECT STATEMENT
 2 SORT GROUP BY
 FILTER
 750 HASH JOIN
 15 TABLE ACCESS FULL PS_RETROPAYPGM_TBL
 1,499 HASH JOIN
 1,499 HASH JOIN
 1,429 HASH JOIN
 5 TABLE ACCESS FULL PS_PAY_CALENDAR
 40,000 TABLE ACCESS FULL WB_JOB
 27,456 TABLE ACCESS FULL WB_RETROPAY_EARNS
 13,679 TABLE ACCESS FULL PS_RETROPAY_RQST
 1 SORT AGGREGATE
 1 FIRST ROW
 1 INDEX RANGE SCAN (MIN/MAX) WB_JOB
 1 SORT AGGREGATE
 2 FIRST ROW
 2 INDEX RANGE SCAN (MIN/MAX) WB_JOB

Comments on the plan after adjusting the column statistics:
1. The ratios of actual/estimated are much smaller
2. The cardinalities of 4 of the 5 base table row sources are accurately estimated
3. Even though the estimates for the cardinalities of PS_PAY_CALENDAR and WB_JOB were correct, the CBO

underestimated the cardinality of their join by a factor of 10, suggesting a violation of the join uniformity
assumption.

It may appear that TCF is only about adjusting statistics. This is not strictly true. It is about addressing the cause for
the cardinality estimate miscalculation. Virtually always this is caused by missing information. The additional
information may come from an additional index, or from a histogram (which in turn changes the statistics). In this
case, the information about the predicate dependency can not be given directly to the CBO. By faking the column
statistics, two wrongs make a right – in this particular case.

© Wolfgang Breitling, Centrex Consulting Corporation 5

REAL-LIFE EXAMPLES USING TCF
Unlike the demo case, which was an artificial test case – albeit based on a real-life case – the following examples are
actual, recent tuning cases. For the record, examples 1-3 are from a system running Oracle 9.2.0.6 SE5 with system
statistics:
SREADTIM 1.971
MREADTIM 2.606
CPUSPEED 618
MBRC 8
MAXTHR -1
SLAVETHR -1

Example 4 is from an Oracle 9.2.0.6 EE system without system statistics.

The explain plan and execution numbers are from v$sql_plan and v$sql_plan_statistics. The operation detail with the
gross cardinality mismatch is highlighted. Note that on some platforms, all that I have worked with, you need to set
statistics_level=all in order to get execution details from v$sql_plan_statistics. Contrary to my general advice not to
pay attention to the cost, I did include the plan cost in the displays for reasons which will become clear later.
In the three examples there are two (E1 and E3) where an actual row count is 0. This is another indicator to watch for
– of course it can be viewed as a special case of the ratio indicator since any ratio with 0 as the denominator is out of
bounds. Provided the row source cardinality is consistently 0, then either that part of the SQL and plan is obsolete, or
the plan could benefit from executing that part early and reduce or eliminate subsequent work.

EXAMPLE 1

The first comparison of the optimizer’s cardinality estimates and the actual row source counts come from the dynamic
performance views V$SQL_PLAN and V$SQL_PLAN_STATISTICS (see script v$xplain in the appendix). In order to get
the execution statistics it is necessary to set STATISTICS_LEVEL=ALL. The second row source operation counts is
taken from the event 10046 trace file (the Cary trace) processed with tkprof. As with the prior method, in order to
get the individual row source execution data (the data in the brackets behind the operation), STATISTICS_LEVEL=ALL
needs to be set. The trace file does contain the “Rows” counts though, even with STATISTICS_LEVEL=TYPICAL or
BASIC, provided the cursor is closed before the trace is.
Getting the comparison data from the dynamic performance views has several advantages over the tkprof alternative:
• No doubt whether the explained plan and the actual execution plan are the same.
• Both, the cardinality estimates and the cardinality actuals are in the same output. No need to assemble and align

them.
• No need to start a trace, find the trace file on the OS, format it – and then find that for one reason or another it

does not contain the execution plan details (the STAT lines for the cursor).
Of course, the dynamic view way has its own pitfalls. Unless you have the system to yourself, you have to act fast. On
a busy system the plan and plan_statistics details can age out of the shared pool quickly. It is not uncommon to still
find the SQL in V$SQL, but the associated plan is no longer in V$SQL_PLAN.

5 Therefore no parallel execution statistics (maxthr and slavethr)

6 © Wolfgang Breitling, Centrex Consulting Corporation

V$SQL_PLAN and V$SQL_PLAN_STATISTICS6:
 COST CARD operation ELAPSED ROWS CR_GETS

 220 SELECT STATEMENT
 220 12,516 HASH JOIN 0.060 0 2,362
 3 15 TABLE ACCESS FULL PS_PRCSRECUR 0.000 15 3
 214 34,057 TABLE ACCESS FULL PSPRCSQUE 0.060 0 2,359

TKPROF:
 Rows Row Source Operation

 0 HASH JOIN (cr=2362 r=0 w=0 time=59799 us)
 15 TABLE ACCESS FULL PS_PRCSRECUR (cr=3 r=0 w=0 time=171 us)
 0 TABLE ACCESS FULL PSPRCSQUE (cr=2359 r=0 w=0 time=58218 us)

TUNING OF EXAMPLE 1

The following actions were taken when trying to tune the SQL in example 1.
 The SQL is using a highly selective value for PSPRCSQUE. PRCSJOBSEQ in the predicate but there is no usable

index on it. Create an index on psprcsque

create index uc_psprcsque_ix1 on psprcsque(prcsjobseq,recurname)

However, that did not change the plan. Of course, with access to the SQL one could force the use of the index.
But that is not possible in this case.

 Create a (frequency) histogram on prcsjobseq

That did change the cardinality estimates, but not enough to change the plan:

 COST CARD operation ELAPSED ROWS CR_GETS

 209 SELECT STATEMENT
 209 236 HASH JOIN 0.040 0 2,362
 3 15 TABLE ACCESS FULL PS_PRCSRECUR 0.000 15 3
 206 641 TABLE ACCESS FULL PSPRCSQUE 0.040 0 2,359

 Modifying the PSPRCSQUE.PRCSJOBSEQ statistics finally did - in conjunction with the index

DBMS_STATS.SET_COLUMN_STATS(USER,'PSPRCSQUE','PRCSJOBSEQ',DISTCNT=>250);

 COST CARD operation ELAPSED ROWS CR_GETS

 40 SELECT STATEMENT
 40 3 HASH JOIN 0.010 0 112
 37 9 TABLE ACCESS BY INDEX ROWID PSPRCSQUE 112
 3 109 INDEX RANGE SCAN UC_PSPRCSQUE_IX1 112 49
 3 15 TABLE ACCESS FULL PS_PRCSRECUR 0.000 0 0

 Changing the DISTCNT of PSPRCSQUE.PRCSJOBSEQ even more results in a still better plan7

DBMS_STATS.SET_COLUMN_STATS(USER,'PSPRCSQUE','PRCSJOBSEQ',DISTCNT=>1000);

 COST CARD OPERATION ELAPSED ROWS CR_GETS

 14 SELECT STATEMENT
 14 1 NESTED LOOPS 0.010 0 112
 12 2 TABLE ACCESS BY INDEX ROWID PSPRCSQUE 112
 3 27 INDEX RANGE SCAN UC_PSPRCSQUE_IX1 112 49
 2 1 TABLE ACCESS BY INDEX ROWID PS_PRCSRECUR 0.000 0 0
 1 1 INDEX UNIQUE SCAN PS_PRCSRECUR 0

6 The SQL for formatting v$sql_plan and v$sql_plan_statistics into the report below can be found in the appendix.
7 From the report below alone it is not obvious, or even apparent, why this is a better plan. All the execution statistics seem

identical. However, a close look at more detailed execution statistics warrants this assertion.

© Wolfgang Breitling, Centrex Consulting Corporation 7

EXAMPLE 2

 COST CARD operation ELAPSED ROWS CR_GETS

 546 SELECT STATEMENT
 546 1,065 HASH JOIN 0.240 1 6,922
 201 1,101 TABLE ACCESS FULL PSPRCSQUE 0.030 1 2,359
 341 36,284 TABLE ACCESS FULL PSPRCSPARMS 0.080 38,539 4,563

 Rows Row Source Operation

 1 HASH JOIN (cr=6922 r=0 w=0 time=236770 us)
 1 TABLE ACCESS FULL PSPRCSQUE (cr=2359 r=0 w=0 time=30341 us)
 38539 TABLE ACCESS FULL PSPRCSPARMS (cr=4563 r=0 w=0 time=77536 us)

TUNING OF EXAMPLE 2

 As with example 1, the predicate value for PSPRCSQUE.RUNSTATUS is highly selective and this time there is a, not
ideal but reasonably usable, index on PSPRCSQUE. However, the optimizer is not using it

 Create a (frequency) histogram on PSPRCSQUE.RUNSTATUS

With the changed column statistics, the optimizer did use the index
Table column NDV density nulls lo hi av lg bkts
PSPRCSQUE RUNSTATUS 11 1.3764E-05 0 1 9 3 10

 COST CARD operation ELAPSED ROWS CR_GETS

 133 SELECT STATEMENT
 133 1 NESTED LOOPS 0.020 1 16
 132 1 TABLE ACCESS BY INDEX ROWID PSPRCSQUE 13
 131 1 INDEX SKIP SCAN PSAPSPRCSQUE 12
 2 1 TABLE ACCESS BY INDEX ROWID PSPRCSPARMS 0.000 1 3
 1 1 INDEX UNIQUE SCAN PS_PSPRCSPARMS 2

EXAMPLE 3
 COST CARD operation ELAPSED ROWS CR_GETS

 221 SELECT STATEMENT
 221 108 SORT ORDER BY 0.040 0 2,363
 FILTER 2,363
 220 108 HASH JOIN 2,363
 5 8 MERGE JOIN CARTESIAN 0.000 7 4
 3 1 TABLE ACCESS BY INDEX ROWID PS_SERVERCATEGORY 1 2
 2 1 INDEX RANGE SCAN PS_SERVERCATEGORY 1
 2 8 BUFFER SORT 7 2
 3 8 TABLE ACCESS BY INDEX ROWID PS_SERVERCLASS 2
 2 8 INDEX RANGE SCAN PS_SERVERCLASS 1
 215 108 TABLE ACCESS FULL PSPRCSQUE 0.040 0 2,359
 FILTER 0.000 0 0
 3 1 TABLE ACCESS BY INDEX ROWID PSPRCSQUE 0
 2 5 INDEX RANGE SCAN PSDPSPRCSQUE 0

8 © Wolfgang Breitling, Centrex Consulting Corporation

 Rows Row Source Operation

 0 SORT ORDER BY (cr=2363 r=0 w=0 time=39950 us)
 0 FILTER (cr=2363 r=0 w=0 time=39930 us)
 0 HASH JOIN (cr=2363 r=0 w=0 time=39926 us)
 7 MERGE JOIN CARTESIAN (cr=4 r=0 w=0 time=213 us)
 1 TABLE ACCESS BY INDEX ROWID PS_SERVERCATEGORY (cr=2 r=0 w=0 time=70 us)
 1 INDEX RANGE SCAN PS_SERVERCATEGORY (cr=1 r=0 w=0 time=40 us)
 7 BUFFER SORT (cr=2 r=0 w=0 time=97 us)
 7 TABLE ACCESS BY INDEX ROWID PS_SERVERCLASS (cr=2 r=0 w=0 time=50 us)
 7 INDEX RANGE SCAN PS_SERVERCLASS (cr=1 r=0 w=0 time=25 us)
 0 TABLE ACCESS FULL PSPRCSQUE (cr=2359 r=0 w=0 time=39040 us)
 0 FILTER
 0 TABLE ACCESS BY INDEX ROWID PSPRCSQUE
 0 INDEX RANGE SCAN PSDPSPRCSQUE

TUNING OF EXAMPLE 3

 By the time we got to tune this SQL, there was nothing left to do.

The SQL had gotten tuned as well by the actions to tune the other two. That is one of the big advantages of
tuning by adjusting statistics over tuning with hints, which by extension, includes stored outlines and profiles.
Statistics changes which are beneficial for one SQL often are beneficial for other, related, SQL as well while hints
always affect only the SQL they are placed in.
Of course, this can just as easily become a disadvantage if the statistics change(s) have a negative effect on other
SQL while the effect of hints, outlines, and profiles is naturally isolated and limited to the tuned SQL.

 COST CARD operation ELAPSED ROWS CR_GETS

 160 SELECT STATEMENT
 160 5 SORT ORDER BY 0.010 0 2
 FILTER 2
 159 5 HASH JOIN 2
 154 5 TABLE ACCESS BY INDEX ROWID PSPRCSQUE 2
 156 5 NESTED LOOPS 2 2
 3 1 TABLE ACCESS BY INDEX ROWID PS_SERVERCATEGORY 0.000 1 2
 2 1 INDEX RANGE SCAN PS_SERVERCATEGORY 1
 INLIST ITERATOR 0 0
 142 103 INDEX RANGE SCAN PSAPSPRCSQUE 0
 3 8 TABLE ACCESS BY INDEX ROWID PS_SERVERCLASS 0
 2 1 INDEX RANGE SCAN PS_SERVERCLASS 0
 FILTER 0
 3 1 TABLE ACCESS BY INDEX ROWID PSPRCSQUE 0
 2 5 INDEX RANGE SCAN PSDPSPRCSQUE 0

© Wolfgang Breitling, Centrex Consulting Corporation 9

EXAMPLE 4

 COST CARD operation ROWS ELAPSED CR_GETS

 144 SELECT STATEMENT
 144 1 VIEW 87 21.490 81,889,486
 FILTER 87 21.490 81,889,486
 137 1 SORT GROUP BY 12,565 21.480 81,889,486
 FILTER 24,437 606.170 81,889,486
 135 1 NESTED LOOPS 3,244,217 600.030 81,851,299
 134 1 NESTED LOOPS 3,244,217 565.460 75,362,863
 132 1 NESTED LOOPS 13,519,270 376.740 53,001,492
 131 1 NESTED LOOPS 13,519,270 259.290 39,482,220
 122 3 HASH JOIN 12,985,742 23.110 1,239
 3 2 TABLE ACCESS FULL PS_RT_RATE_TBL 975 0.020 22
 118 9 TABLE ACCESS FULL PS_CUST_CREDIT 34,676 0.390 1,217
 3 1 TABLE ACCESS BY INDEX ROWID PS_CUSTOMER 13,519,270 194.890 39,480,981
 2 1 INDEX RANGE SCAN PSBCUSTOMER 13,831,838 106.360 26,075,609
 1 1 TABLE ACCESS BY INDEX ROWID PS_RT_INDEX_TBL 13,519,270 84.440 13,519,272
 1 INDEX UNIQUE SCAN PS_RT_INDEX_TBL 13,519,270 26.830 2
 2 1 TABLE ACCESS BY INDEX ROWID PS_CUST_DATA 3,244,217 152.400 22,361,371
 1 1 INDEX RANGE SCAN PSACUST_DATA 9,206,235 98.990 13,627,522
 1 1 TABLE ACCESS BY INDEX ROWID PS_CUSTOMER 3,244,217 25.700 6,488,436
 1 INDEX UNIQUE SCAN PS_CUSTOMER 3,244,217 13.270 3,244,219
 1 SORT AGGREGATE 12,631 1.290 38,160
 4 1 TABLE ACCESS BY INDEX ROWID PS_CUST_CREDIT 12,767 1.190 38,160
 3 1 INDEX RANGE SCAN PS_CUST_CREDIT 12,771 0.340 25,378
 1 SORT AGGREGATE 4 0.040 27
 3 2 NESTED LOOPS 749 0.040 27
 2 1 TABLE ACCESS FULL PS_RT_INDEX_TBL 4 0.000 12
 1 2 INDEX RANGE SCAN PS_RT_RATE_TBL 749 0.040 15

TUNING OF EXAMPLE 4

 Adjust the density of the EFFDT column of tables PS_RT_RATE_TBL and PS_CUST_CREDIT:
@SET_COL_DENSITY PS_CUST_CREDIT EFFDT 1
@SET_COL_DENSITY PS_RT_RATE_TBL EFFDT 1
the rational is the extraordinarily high discrepancy of the hash join cardinality estimate (12,985,742 : 3) after the
– comparably – modest divergence in the estimates for the constituent tables. This quite obviously is a case of
join uniformity violation. Note that, not so coincidentally, both tables involved in the hash join with the
catastrophic cardinality assessment have an associated effective-date subquery. The effective-date subqueries
instill a false impression of uniqueness, or close-to unique, on the CBO. As with the demo query, forcing the
EFFDT density to 1 neutralizes this false appearance of uniqueness.

 COST CARD operation ROWS ELAPSED CR_GETS

53825 SELECT STATEMENT
53825 6,488 VIEW 87 17.720 49,408
 FILTER 87 17.720 49,408
 8409 6,488 SORT GROUP BY 12,565 17.710 49,408
 FILTER 24,437 17.430 49,408
 756 129,744 HASH JOIN 3,244,217 13.610 6,807
 2 1 TABLE ACCESS FULL PS_RT_INDEX_TBL 1 0.000 3
 748 129,744 HASH JOIN 3,244,217 7.570 6,804
 3 975 TABLE ACCESS FULL PS_RT_RATE_TBL 975 0.030 22
 742 3,726 HASH JOIN 24,578 2.800 6,782
 570 2,651 HASH JOIN 36,097 1.980 5,212
 492 2,651 HASH JOIN 36,097 1.210 4,724
 338 5,267 TABLE ACCESS FULL PS_CUSTOMER 40,715 0.170 3,507
 118 39,207 TABLE ACCESS FULL PS_CUST_CREDIT 34,676 0.210 1,217
 48 42,133 INDEX FAST FULL SCAN PS0CUSTOMER 42,133 0.070 488
 152 29,605 TABLE ACCESS FULL PS_CUST_DATA 29,609 0.040 1,570
 1 SORT AGGREGATE 14,091 0.890 42,574
 4 1 TABLE ACCESS BY INDEX ROWID PS_CUST_CREDIT 14,229 0.860 42,574
 3 1 INDEX RANGE SCAN PS_CUST_CREDIT 14,233 0.220 28,326

10 © Wolfgang Breitling, Centrex Consulting Corporation

 1 SORT AGGREGATE 4 0.020 27
 3 2 NESTED LOOPS 749 0.020 27
 2 1 TABLE ACCESS FULL PS_RT_INDEX_TBL 4 0.000 12
 1 2 INDEX RANGE SCAN PS_RT_RATE_TBL 749 0.020 15

COMPARING TCF TO HINTS AND PROFILES

While preparing the plan listings for examples 1-3 I noticed something which I wanted to explore further8. I had
become accustomed to the apparent fact – mostly from postings in newsgroups – that a tuned plan has a higher cost
than the original plan9. Just as I was to include a remark to that effect in the presentation I noticed that that was not
the case here – the tuned plans all had a lower cost10. I thus got curious about what the cost would be with other
tuning methods, namely hints and profiles11.

ORIGINAL PLAN AND COST

 COST CARD operation ELAPSED ROWS CR_GETS

 220 SELECT STATEMENT
 220 12,516 HASH JOIN 0.060 0 2,362
 3 15 TABLE ACCESS FULL PS_PRCSRECUR 0.000 15 3
 214 34,057 TABLE ACCESS FULL PSPRCSQUE 0.060 0 2,359

AFTER NEW INDEX AND FREQUENCY HISTOGRAM

 COST CARD operation ELAPSED ROWS CR_GETS

 209 SELECT STATEMENT
 209 236 HASH JOIN 0.040 0 2,362
 3 15 TABLE ACCESS FULL PS_PRCSRECUR 0.000 15 3
 206 641 TABLE ACCESS FULL PSPRCSQUE 0.040 0 2,359

AFTER SETTING PSPRCSQUE.PRCSJOBSEQ TO 250

 COST CARD operation ELAPSED ROWS CR_GETS

 40 SELECT STATEMENT
 40 3 HASH JOIN 0.010 0 112
 37 9 TABLE ACCESS BY INDEX ROWID PSPRCSQUE 112
 3 109 INDEX RANGE SCAN UC_PSPRCSQUE_IX1 112 49
 3 15 TABLE ACCESS FULL PS_PRCSRECUR 0.000 0 0

AFTER SETTING PSPRCSQUE.PRCSJOBSEQ TO 1000

 COST CARD OPERATION ELAPSED ROWS CR_GETS

 14 SELECT STATEMENT
 14 1 NESTED LOOPS 0.010 0 112
 12 2 TABLE ACCESS BY INDEX ROWID PSPRCSQUE 112
 3 27 INDEX RANGE SCAN UC_PSPRCSQUE_IX1 112 49
 2 1 TABLE ACCESS BY INDEX ROWID PS_PRCSRECUR 0.000 0 0
 1 1 INDEX UNIQUE SCAN PS_PRCSRECUR 0

Note how the cost goes down with progressive tuning by adjusting the statistics.

8 Isn’t that how it often goes: trying to find the answer to one question only raises more questions to investigate.
9 Of course it could be that one just does not hear of all the other, normal occurrences, only of the ostensible anomalies.
10 That was before I added example 4
11 You may notice an inconsistency here. All the examples are from Oracle 9.2 system – which has no profiles!? The answer is

that I exported the tables involved to a 10g system in order to test DBMS_SQLTUNE and prodiles.

© Wolfgang Breitling, Centrex Consulting Corporation 11

WITH INDEX HINT
/*+ INDEX(R, UC_PSPRCSQUE_IX1) INDEX(S, PS_PRCSRECUR) USE_NL(S,R) */
 COST CARD operation ELAPSED ROWS CR_GETS

 672 SELECT STATEMENT
 672 54 NESTED LOOPS 0.010 0 111
 529 142 TABLE ACCESS BY INDEX ROWID PSPRCSQUE 0.010 0 111
 9 1,703 INDEX RANGE SCAN UC_PSPRCSQUE_IX1 0.010 112 48
 2 1 TABLE ACCESS BY INDEX ROWID PS_PRCSRECUR 0.000 0 0
 1 1 INDEX UNIQUE SCAN PS_PRCSRECUR 0.000 0 0

Despite being the same plan, the one resulting from hints has a much higher cost than both the untuned, slower plan
and especially the TCF tuned plan. That should not come as a surprise. If the cost would be lower the CBO would
have chosen the hinted plan in the first place. The high cost is entirely fuelled by the incorrect cardinality estimates.
Clearly the correlation between cost and SQL performance is broken when tuning with hints – the cost went up, but
the performance improved.

FINDINGS SECTION (2 FINDINGS)

1- SQL Profile Finding (see explain plans section below)
A potentially better execution plan was found for this statement.
 Recommendation (estimated benefit: 89.1%)
 Consider accepting the recommended SQL profile.

2- Using SQL Profile

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	92	47 (0)	00:00:01
1	NESTED LOOPS		1	92	47 (0)	00:00:01
2	TABLE ACCESS BY INDEX ROWID	PSPRCSQUE	1	73	46 (0)	00:00:01
3	INDEX SKIP SCAN	PSAPSPRCSQUE	1		45 (0)	00:00:01
4	TABLE ACCESS BY INDEX ROWID	PS_PRCSRECUR	1	19	1 (0)	00:00:01
5	INDEX UNIQUE SCAN	PS_PRCSRECUR	1		0 (0)	00:00:01

 ATTR ATTR_VALUE
 1 OPT_ESTIMATE(@"SEL$1", TABLE, "R"@"SEL$1", SCALE_ROWS=0.00664262176)
 2 OPT_ESTIMATE(@"SEL$1", INDEX_FILTER, "R"@"SEL$1", PSAPSPRCSQUE,

SCALE_ROWS=0.0001556864475)
 3 OPT_ESTIMATE(@"SEL$1", INDEX_SKIP_SCAN, "R"@"SEL$1", PSBPSPRCSQUE,

SCALE_ROWS=2.784763486)
 4 OPT_ESTIMATE(@"SEL$1", INDEX_FILTER, "R"@"SEL$1", UC_PSPRCSQUE_IX1,

SCALE_ROWS=6.021536625)
 5 OPT_ESTIMATE(@"SEL$1", INDEX_FILTER, "R"@"SEL$1", PSEPSPRCSQUE,

SCALE_ROWS=6.919397666e-005)
 6 OPT_ESTIMATE(@"SEL$1", INDEX_SKIP_SCAN, "R"@"SEL$1", UC_PSPRCSQUE_IX1,

SCALE_ROWS=4.516152469)
 7 OPT_ESTIMATE(@"SEL$1", INDEX_SKIP_SCAN, "R"@"SEL$1", PSEPSPRCSQUE,

SCALE_ROWS=5.18954825e-005)

The DBMS_SQLTUNE exercise came up with a very similar plan to the one derived at by adding the histogram. This
plan uses an index skip scan on an existing index instead of the range scan on the custom index which, as can be seen
in the profile hints, had been created before running DBMS_SQLTUNE. Note that the profile contains cardinality scale
factors for every base access path of the table. Therefore, even with the profile in place, at parse time the CBO can still
choose between different access paths depending on other factors, e.g. predicate values.
Interestingly enough, the recommendations did not include one for a histogram.
Note that the profile essentially does the same what the TCF method attempts to achieve – correct the cardinality
estimates. Profiles do that by applying a scale factor to individual row sources rather than adjusting the base statistics.
The result is obviously a more targeted and precise adjustment and one that has fewer possible side-effects.

12 © Wolfgang Breitling, Centrex Consulting Corporation

THE TALE BEHIND THE TUNING EXERCISE (OF EXAMPLES 1-3)
OR
WHAT I FOUND WHEN I VISITED A USER
Told in the presentation

REFERENCES
1. Holdsworth, A., et al. A Practical Approach to Optimizer Statistics in 10g. in Oracle Open World. September

17-22, 2005. San Francisco.
2. Breitling, W. Fallacies of the Cost Based Optimizer. in Hotsos Symposium on Oracle Performance. 2003. Dallas,

Texas.
3. Lewis, J., Cost-based Oracle: Fundamentals. 2006: Apress. ISBN 1590596366.

APPENDIX

DEMO SQL
SELECT A.COMPANY, A.PAYGROUP, E.OFF_CYCLE, E.SEPCHK_FLAG, E.TAX_METHOD
 , E.TAX_PERIODS, C.RETROPAY_ERNCD, sum(C.AMOUNT_DIFF)
from PS_PAY_CALENDAR A
 , WB_JOB B
 , WB_RETROPAY_EARNS C
 , PS_RETROPAY_RQST D
 , PS_RETROPAYPGM_TBL E
where A.RUN_ID = 'PD2'
 and A.PAY_CONFIRM_RUN = 'N'
 and B.COMPANY = A.COMPANY
 and B.PAYGROUP = A.PAYGROUP
 and B.EFFDT = (SELECT MAX(F.EFFDT) from WB_JOB F
 where F.EMPLID = B.EMPLID
 and F.EMPL_RCD# = B.EMPL_RCD#
 and F.EFFDT <= A.PAY_END_DT)
 and B.EFFSEQ = (SELECT MAX(G.EFFSEQ) from WB_JOB G
 where G.EMPLID = B.EMPLID
 and G.EMPL_RCD# = B.EMPL_RCD#
 and G.EFFDT = B.EFFDT)
 and C.EMPLID = B.EMPLID
 and C.EMPL_RCD# = B.EMPL_RCD#
 and C.RETROPAY_PRCS_FLAG = 'C'
 and C.RETROPAY_LOAD_SW = 'Y'
 and D.RETROPAY_SEQ_NO = C.RETROPAY_SEQ_NO
 and E.RETROPAY_PGM_ID = D.RETROPAY_PGM_ID
 and E.OFF_CYCLE = A.PAY_OFF_CYCLE_CAL
group by A.COMPANY, A.PAYGROUP, E.OFF_CYCLE, E.SEPCHK_FLAG, E.TAX_METHOD
 , E.TAX_PERIODS, C.RETROPAY_ERNCD

The WB_ prefixed tables are scaled back versions of the originals solely for performance reason. With the original
sizes the query never finished (or, rather, was not given the time to finish). All the data in the demo tables are made
up, but the tables, except for the scaled back WB_ tables, have sizes and other statistics to match the originals. The real
PS_RETROPAY_EARNS table was more than 10 times the size of its demo sibling, ~ 1.5 million rows.

EXAMPLE 1 SQL
SELECT R.PRCSINSTANCE ,R.ORIGPRCSINSTANCE ,R.RECURORIGPRCSINST,
 R.MAINJOBINSTANCE ,R.PRCSJOBSEQ ,R.PRCSJOBNAME ,R.PRCSNAME,
 R.PRCSTYPE, R.RECURNAME
FROM PSPRCSQUE R ,PS_PRCSRECUR S

© Wolfgang Breitling, Centrex Consulting Corporation 13

WHERE ((R.RUNSTATUS IN (:"SYS_B_00", :"SYS_B_01") AND S.INITIATEWHEN =
:"SYS_B_02")
 OR (R.RUNSTATUS IN (:"SYS_B_03", :"SYS_B_04", :"SYS_B_05", :"SYS_B_06",
:"SYS_B_07",:"SYS_B_08", :"SYS_B_09") AND S.INITIATEWHEN = :"SYS_B_10"))
 AND R.INITIATEDNEXT = :"SYS_B_11"
 AND R.OPSYS = :1
 AND R.RUNLOCATION = :"SYS_B_12"
 AND R.RECURNAME <> :"SYS_B_13"
 AND R.PRCSJOBSEQ = :"SYS_B_14"
 AND R.SERVERNAMERUN = :2
 AND R.RECURNAME = S.RECURNAME

Obviously, these example came from a database running with CURSOR_SHARING=force.

EXAMPLE 2 SQL
SELECT Q.PRCSINSTANCE, Q.JOBINSTANCE, Q.MAINJOBINSTANCE, Q.SESSIONIDNUM
, Q.OPRID, Q.OUTDESTTYPE, Q.GENPRCSTYPE, Q.PRCSTYPE
, P.PRCSOUTPUTDIR FROM PSPRCSQUE Q
 , PSPRCSPARMS P
WHERE Q.RUNSTATUS = :1
 AND Q.SERVERNAMERUN = :2
 AND Q.RUNLOCATION = :"SYS_B_0"
 AND Q.PRCSINSTANCE = P.PRCSINSTANCE

EXAMPLE 3 SQL
SELECT R.PRCSINSTANCE, R.ORIGPRCSINSTANCE, R.JOBINSTANCE, R.MAINJOBINSTANCE
, R.MAINJOBNAME, R.PRCSITEMLEVEL, R.PRCSJOBSEQ, R.PRCSJOBNAME, R.PRCSTYPE
, R.PRCSNAME, R.PRCSPRTY, TO_CHAR(R.RUNDTTM,:"SYS_B_00"), R.GENPRCSTYPE
, R.OUTDESTTYPE, R.RETRYCOUNT, R.RESTARTENABLED, R.SERVERNAMERQST, R.OPSYS
, R.SCHEDULENAME, R.PRCSCATEGORY, R.P_PRCSINSTANCE, C.PRCSPRIORITY
, S.PRCSPRIORITY, R.PRCSWINPOP, R.MCFREN_URL_ID
FROM PSPRCSQUE R, PS_SERVERCLASS S, PS_SERVERCATEGORY C
WHERE R.RUNDTTM <= SYSDATE
 AND R.OPSYS = :1 AND R.RUNSTATUS = :2
 AND (R.SERVERNAMERQST = :3 OR R.SERVERNAMERQST = :"SYS_B_01")
 AND S.SERVERNAME = :4 AND R.PRCSTYPE = S.PRCSTYPE
 AND R.PRCSCATEGORY = C.PRCSCATEGORY AND S.SERVERNAME = C.SERVERNAME
 AND ((R.PRCSJOBSEQ = :"SYS_B_02" AND R.PRCSTYPE <> :"SYS_B_03")
 OR (R.PRCSJOBSEQ > :"SYS_B_04" AND R.MAINJOBINSTANCE IN (
 SELECT A.MAINJOBINSTANCE FROM PSPRCSQUE A WHERE A.MAINJOBINSTANCE >
:"SYS_B_05"
 AND A.PRCSTYPE=:"SYS_B_06" AND A.RUNSTATUS=:"SYS_B_07"
 AND A.PRCSJOBSEQ = :"SYS_B_08"
 AND (A.SERVERNAMERUN = :"SYS_B_09" OR A.SERVERNAMERUN = :5))))
 AND C.MAXCONCURRENT > :"SYS_B_10"
ORDER BY C.PRCSPRIORITY DESC, R.PRCSPRTY DESC, S.PRCSPRIORITY DESC, R.RUNDTTM ASC

EXAMPLE 4 SQL
SELECT A.SETID, A.CUST_ID, A.NAME1, A.BAL_AMT, A.CR_LIMIT, (A.CR_LIMIT_REV_DT)
, A.CUSTCR_PCT_OVR, A.CR_LIMIT_RANGE, A.CR_LIMIT_CORP_DT, A.XX_FOLLOWUP_DATE
, A.CURRENCY_CD
, (A.BAL_AMT - (A.CR_LIMIT + ((A.CR_LIMIT * A.CUSTCR_PCT_OVR) / 100)))
, 'CRLMT'
FROM PS_XX_CR_LMT_VW A
WHERE A.BAL_AMT > (A.CR_LIMIT + ((A.CR_LIMIT * A.CUSTCR_PCT_OVR) / 100))
 AND (A.XX_FOLLOWUP_DATE <= sysdate OR A.XX_FOLLOWUP_DATE IS NULL)
 AND A.CR_LIMIT > 0
ORDER BY XX_FOLLOWUP_DATE

With the view defined as

14 © Wolfgang Breitling, Centrex Consulting Corporation

CREATE OR REPLACE VIEW PS_XX_CR_LMT_VW
 (SETID, CUST_ID, NAME1, BAL_AMT, CR_LIMIT, CR_LIMIT_REV_DT, CUSTCR_PCT_OVR
 , CR_LIMIT_RANGE, CR_LIMIT_CORP_DT, TT_FOLLOWUP_DATE, CURRENCY_CD)
AS
SELECT C.REMIT_FROM_SETID, C.REMIT_FROM_CUST_ID, N.NAME1
, SUM(D.BAL_AMT * R.CUR_EXCHNG_RT), O.CR_LIMIT_CORP, O.CR_LIMIT_REV_DT
, O.CORPCR_PCT_OVR, O.CR_LIM_CORP_RANGE, O.CR_LIMIT_CORP_DT, O.TT_FOLLOWUP_DATE
, O.CURRENCY_CD
FROM PS_CUSTOMER C
, PS_CUST_DATA D
, PS_CUST_CREDIT O
, PS_CUSTOMER N
, PS_CUR_RT_TBL R
WHERE C.CUST_STATUS = 'A'
 AND C.BILL_TO_FLG = 'Y'
 AND C.CUST_LEVEL <> 'P'
 AND C.SETID = 'TTS'
 AND C.CUST_ID = D.CUST_ID
 AND O.SETID = C.REMIT_FROM_SETID
 AND O.CUST_ID= C.REMIT_FROM_CUST_ID
 AND O.EFFDT = (
 SELECT MAX(EFFDT) FROM PS_CUST_CREDIT OO
 WHERE OO.SETID = O.SETID
 AND OO.CUST_ID = O.CUST_ID
 AND OO.EFFDT <= TO_DATE(TO_CHAR(SYSDATE,'YYYY-MM-DD'),'YYYY-MM-DD')
 AND OO.EFF_STATUS = 'A')
 AND N.SETID = C.REMIT_FROM_SETID
 AND N.CUST_ID = C.REMIT_FROM_CUST_ID
 AND R.FROM_CUR = D.CURRENCY_CD
 AND R.TO_CUR = O.CURRENCY_CD
 AND R.CUR_RT_TYPE = O.RT_TYPE
 AND R.EFFDT = (
 SELECT MAX(EFFDT) FROM PS_CUR_RT_TBL RR
 WHERE RR.FROM_CUR =R.FROM_CUR
 AND RR.TO_CUR = R.TO_CUR
 AND RR.CUR_RT_TYPE =R.CUR_RT_TYPE
 AND RR.EFFDT <= TO_DATE(TO_CHAR(SYSDATE,'YYYY-MM-DD'),'YYYY-MM-DD')
 AND RR.EFF_STATUS = 'A')
GROUP BY C.REMIT_FROM_SETID, C.REMIT_FROM_CUST_ID, N.NAME1
, C.ROLEUSER, O.CR_LIMIT_CORP, O.CR_LIMIT_REV_DT, O.CORPCR_PCT_OVR
, O.CR_LIM_CORP_RANGE, O.CR_LIMIT_CORP_DT, O.TT_FOLLOWUP_DATE, O.CURRENCY_CD

TABLE AND INDEX STATISTICS FOR THE PSPRCSQUE TABLE (EXAMPLES 1-3)

The psprcsque table was fingered in all three examples as the one with the cardinality estimate problem:

TABLE_NAME rows blks empty avg_row
PSPRCSQUE 38,539 2,326 0 204

table index column NDV DENS #LB lvl #LB/K #LB/K CLUF
PSPRCSQUE PSAPSPRCSQUE 43 257 2 5 116 4,998
 SERVERNAMERQST 3 3.3333E-01 0 0 0 0
 SERVERNAMERUN 3 3.3333E-01 0 0 0 0
 OPSYS 2 5.0000E-01 0 0 0 0
 RUNSTATUS 11 9.0909E-02 0 0 0 0

table index column NDV DENS #LB lvl #LB/K #LB/K CLUF
PSPRCSQUE PSBPSPRCSQUE 38,539 242 2 1 1 3,735
 SERVERNAMERUN 3 3.3333E-01 0 0 0 0
 PRCSINSTANCE 38,539 2.5948E-05 0 0 0 0

© Wolfgang Breitling, Centrex Consulting Corporation 15

table index column NDV DENS #LB lvl #LB/K #LB/K CLUF
PSPRCSQUE PSCPSPRCSQUE 38,539 315 1 1 1 2,658
 PRCSINSTANCE 38,539 2.5948E-05 0 0 0 0
 SESSIONIDNUM 9,015 1.1093E-04 0 0 0 0
 OPRID 139 7.1942E-03 0 0 0 0

 PSDPSPRCSQUE 7,249 174 1 1 1 4,395
 MAINJOBINSTANCE 7,249 1.3795E-04 0 0 0 0

 PSEPSPRCSQUE 10,735 221 2 1 1 3,121
 RECURORIGPRCSINST 10,731 9.3188E-05 0 0 0 0
 RECURNAME 4 2.5000E-01 0 0 0 0
 INITIATEDNEXT 2 5.0000E-01 0 0 0 0

 PS_PSPRCSQUE U 38,539 166 1 1 1 2,658
 PRCSINSTANCE 38,539 2.5948E-05 0 0 0 0

TABLE AND INDEX STATISTICS FOR TABLE IN EXAMPLE 4

TABLE_NAME rows blks empty avg_row
PS_RT_RATE_TBL 975 19 0 48

PS_CUST_CREDIT 39,593 1,214 0 109

table index column NDV DENS #LB lvl #LB/K #LB/K CLUF
PS_RT_RATE_TBL PSART_RATE_TBL 975 8.1485E+01 13 1 1 1 196
 EFFDT 466 2.1459E-03
 FROM_CUR 2 5.0000E-01
 TO_CUR 2 5.0000E-01
 TERM 1 1.0000E+00
 RT_TYPE 7 1.4286E-01
 RT_RATE_INDEX 1 1.0000E+00

 PSBRT_RATE_TBL 16 9.0272E+01 7 1 1 7 112
 SYNCID 16 6.2500E-02

 PS_RT_RATE_TBL U 975 7.7197E+01 14 1 1 1 237
 RT_RATE_INDEX 1 1.0000E+00
 TERM 1 1.0000E+00
 FROM_CUR 2 5.0000E-01
 TO_CUR 2 5.0000E-01
 RT_TYPE 7 1.4286E-01
 EFFDT 466 2.1459E-03

PS_CUST_CREDIT PS_CUST_CREDIT U 39,593 9.6475E+01 333 2 1 1 2,567
 SETID 1 1.0000E+00
 CUST_ID 39,309 2.5439E-05
 EFFDT 4,430 2.2573E-04

SQL SCRIPT TO SHOW EXECUTION PLAN WITH ROW SOURCE STATISTICS (IF AVAILABLE)

--
-- Script: v$xplain.sql
-- Purpose: format the plan and execution statistics from the dynamic
-- performance views v$sql_plan and v$sql_plan_statistics
--
-- Copyright: (c)1996-2006 Centrex Consulting Corporation
-- Author: Wolfgang Breitling
--
-- Usage One parameter: sql_hash_value
--

set define '~'
define hv=~1

set verify off echo off feed off
set linesize 300 pagesize 3000

16 © Wolfgang Breitling, Centrex Consulting Corporation

col hv head 'hv' noprint
col "cn" for 90 print
col "card" for 999,999,990
col "ROWS" for 999,999,990
col "ELAPSED" for 99,990.999
col "CPU" for 99,990.999
col CR_GETS for 99,999,990
col CU_GETS for 99,999,990
col READS for 9,999,990
col WRITES for 99,990

break on hv skip 0 on "cn" skip 0

SELECT P.HASH_VALUE hv
 , P.CHILD_NUMBER "cn"
 , to_char(p.id,'990')||decode(access_predicates,null,null,'A')
 ||decode(filter_predicates,null,null,'F') id
 , P.COST "cost"
 , P.CARDINALITY "card"
 , LPAD(' ',depth)||P.OPERATION||' '||
 P.OPTIONS||' '||
 P.OBJECT_NAME||
 DECODE(P.PARTITION_START,NULL,' ',':')||
 TRANSLATE(P.PARTITION_START,'(NRUMBE','(NR')||
 DECODE(P.PARTITION_STOP,NULL,' ','-')||
 TRANSLATE(P.PARTITION_STOP,'(NRUMBE','(NR') "operation"
 , P.POSITION "pos"
 , (SELECT S.LAST_OUTPUT_ROWS FROM V$SQL_PLAN_STATISTICS S
 WHERE S.ADDRESS=P.ADDRESS and s.hash_value=p.hash_value
 and s.child_number=p.child_number AND S.OPERATION_ID=P.ID) "ROWS"
 , (SELECT ROUND(S.LAST_ELAPSED_TIME/1000000,2)
 FROM V$SQL_PLAN_STATISTICS S
 WHERE S.ADDRESS=P.ADDRESS and s.hash_value=p.hash_value
 and s.child_number=p.child_number AND S.OPERATION_ID=P.ID) "ELAPSED"
 , (SELECT S.LAST_CR_BUFFER_GETS FROM V$SQL_PLAN_STATISTICS S
 WHERE S.ADDRESS=P.ADDRESS and s.hash_value=p.hash_value
 and s.child_number=p.child_number AND S.OPERATION_ID=P.ID) "CR_GETS"
 , (SELECT S.LAST_CU_BUFFER_GETS FROM V$SQL_PLAN_STATISTICS S
 WHERE S.ADDRESS=P.ADDRESS and s.hash_value=p.hash_value
 and s.child_number=p.child_number AND S.OPERATION_ID=P.ID) "CU_GETS"
 , (SELECT S.LAST_DISK_READS FROM V$SQL_PLAN_STATISTICS S
 WHERE S.ADDRESS=P.ADDRESS and s.hash_value=p.hash_value
 and s.child_number=p.child_number AND S.OPERATION_ID=P.ID) "READS"
 , (SELECT S.LAST_DISK_WRITES FROM V$SQL_PLAN_STATISTICS S
 WHERE S.ADDRESS=P.ADDRESS and s.hash_value=p.hash_value
 and s.child_number=p.child_number AND S.OPERATION_ID=P.ID) "WRITES"
FROM V$SQL_PLAN P
where p.hash_value = ~hv
order by P.CHILD_NUMBER, p.id
/

i Wolfgang Breitling had been a systems programmer for IMS and later DB2 databases on IBM mainframes for several
years before, in 1993, he joined a project to implement Peoplesoft on Oracle. In 1996 he became an independent
consultant specializing in administering and tuning Peoplesoft on Oracle. The particular challenges in tuning
Peoplesoft, with often no access to the SQL, motivated him to explore Oracle's cost-based optimizer in an effort to
better understand how it works and use that knowledge in tuning. He has shared the findings from this research in
papers and presentations at IOUG, UKOUG, local Oracle user groups, and other conferences and newsgroups
dedicated to Oracle performance topics.

