
© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

UUSSIINNGG DDBBMMSS__SSTTAATTSS IINN AACCCCEESSSS PPAATTHH OOPPTTIIMMIIZZAATTIIOONN

Wolfgang Breitling, Centrex Consulting Corporation

Following a brief introduction to the procedures of the DBMS_STATS package in section 1, section 2 looks at the
differences of GATHER_XXX_STATS between Oracle 8 and 9. It will further show ways of transferring statistics
between databases with caveats on what to watch for when using production statistics in a test database. Finally, in
section 3 we will show two scenarios where the deliberate use of SET_COLUMN_STATS to change column statistics
helps the optimizer choose a better, faster and more scalable access plan. The goal is to promote the notion that the
statistics are a means to give the CBO information about the data in the database in order to enable it to make the best
possible access path decisions and that the statistics are not a “sacred cow” but that it is OK to alter them in order to
give the optimizer better information.
The findings presented are based on experience and tests with Oracle 8i (8.1.7) on Windows 2000, Linux Redhat 7.2,
HP-UX 11.0, and Compaq Tru64 5.1. Comments on changes in Oracle 9i are based on Oracle 9.2.0 on Windows 2000
and Linux Redhat 7.2.

1. THE DBMS_STATS PACKAGE

With Oracle 8 Oracle introduced the DBMS_STATS package for statistics collection and maintenance: “With
DBMS_STATS you can view and modify optimizer statistics gathered for database objects. The statistics can reside in
the dictionary or in a table created in the user’s schema for this purpose.” (A76936-01, 1999, A96612-01, 2002)
The DBMS_STATS subprograms perform the following general functions:
• Gather optimizer statistics
• Transfer statistics
• Set or get statistics
When a DBMS_STATS subprogram modifies or deletes the statistics for an object, all the dependent cursors are
invalidated by default and corresponding statements are subject to recompilation next time so that the new statistics
have immediate effects. This behavior can be altered with the NO_INVALIDATE argument.1

Oracle 9 expands the package to include new procedures and options.

GATHER OPTIMIZER STATISTICS

There are four procedures to gather statistics on objects in the database:
• GATHER_DATABASE_STATS, GATHER_SCHEMA_STATS

gathers statistics for all objects in the database or in a schema. There are many options for special processing, e.g.
finding all objects without, or with stale statistics.

• GATHER_TABLE_STATS
gathers table and column statistics. It can gather statistics for individual partitions; the default is to gather global
table statistics and individual statistics for all partitions. Gather_table_stats is also the procedure to gather
histograms.
Unlike analyze, gather_table_stats can do much of the statistics gathering in parallel, but there are limitations.
Consult the manual.
After gathering table and column stats, gather_table_stats can also gather statistics on all indexes of the table, but
unlike analyze does not do so by default (cascade => { true | fa lse })

1 New in Oracle 9

2 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

• GATHER_INDEX_STATS
gathers index statistics. It does not execute in parallel. As with gather_table_stats, unless a partition name is
specified, global statistics and statistics for all individual partitions are gathered for a partitioned index.

All gathering procedures have the option to save the current statistics in a user statistics table before overwriting them. There
are corresponding DELETE_xxx_STATS procedures plus an additional DELETE_COLUMN_STATS procedure. With DBMS_STATS
it is possible to delete the statistics for individual columns.

Additions to DBMS_STATS in Oracle 9i:

• GATHER_SYSTEM_STATS
gathers system statistics. The current values can be retrieved with GET_SYSTEM_STATS or viewed by querying
sys.aux_stats$
sreadtim average time to read single block (random read), in milliseconds
mreadtim average time to read an mbrc block at once (sequential read), in milliseconds
cpuspeed average number of CPU cycles per second, in millions
mbrc average multiblock read count for sequential read, in blocks
maxthr maximum I/O system throughput, in bytes/sec
slavethr average slave I/O throughput, in bytes/sec

Unlike the database object statistics gathering, gathering system statistics does not invalidate any SQL in the SGA and
cause it to be reparsed. However, Oracle9i now has a parameter in all the object statistics gathering procedures to not
invalidate SQL either (no_invalidate => { t rue | fa lse })

• ALTER_SCHEMA_TAB_MONITORING , ALTER_DATABASE_TAB_MONITORING
Shortcut ways to enable monitoring for all tables in a schema or in the entire database, optionally including catalog
tables.

• FLUSH_DATABASE_MONITORING_INFO
To request a flush of the monitoring data from the SGA to the SYS.MON_MODS$ catalog table. The monitoring
data is also flushed at regular intervals by SMON or when the database is closed.

For details on the DBMS_STATS package and its subprocedures please refer to the appropriate documentation.
(A76936-01, 1999, A96612-01, 2002)

2.1 DIFFERENCES BETWEEN ANALYZE AND DBMS_STATS

In Oracle 8i there is actually not much difference between DBMS_STATS and analyze, provided equivalent requests are
used, since DBMS_STATS is using analyze under the covers for index statistics and histograms.
Recall that

gather_table_stats(‘owner’, ‘table_name’, NULL, estimate_pct)
is not equivalent to

analyze table owner.table_name {compute | estimate} statistics
The former does not gather statistics on indexes since CASCADE defaults to false.
Oracle 9i does not use analyze anymore as we will see next.

2.2 DBMS_STATS DIFFERENCES BETWEEN ORACLE 8 AND ORACLE 9
Following we look in more detail at the internal processing of gather_table_stats
Tracing a gather_table_stats call with the 10046 event reveals the dependent SQL executed on behalf of the request. In
this paper only 1st level dependent SQL that is not attributed to SYS are shown.

Using DBMS_STATS in Access Path Optimization 3

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

USING THE STANDARD / DEFAULT METHOD_OPT SETTING

DBMS_STATS.GATHER_TABLE_STATS (
 ownname => NULL
, tabname => 'T1'2

[, estimate_percent => null]
[, method_opt => 'FOR ALL COLUMNS SIZE 1']
[, degree => NULL]
[, granularity => 'DEFAULT']
, cascade => TRUE
);

ORACLE 8i

select /*+3 */ count(*)
, count("PK1"), count(distinct "PK1"), sum(vsize("PK1")), min("PK1"), max("PK1")
, count("PK2"), count(distinct "PK2"), sum(vsize("PK2")), min("PK2"), max("PK2")
, count("D1"), count(distinct "D1"), 8, min("D1"), max("D1")
, count("D2"), count(distinct "D2"), sum(vsize("D2")), min("D2"), max("D2")
, count("D3"), count(distinct "D3"), sum(vsize("D3")), min(substrb("D3",1,32)),
max(substrb("D3",1,32))
from "SCOTT"."T1" t

analyze index "SCOTT"."T1P" COMPUTE statistics

As we can see, the first SQL gathers the information for the table and column statistics. Average column and row size can be
calculated from the sum of the column sizes and the row count. The number of nulls for each column can be deduced from
the difference of row and column counts and the apparently missing table block count is taken from the table’s segment
header. The second SQL reveals that Oracle 8 resorts to the analyze command in order to get the index statistics.

ORACLE 9i

The same GATHER_TABLE_STATS request in Oracle 9i is processed as follows:

select /*+ */ count(*)
, count("PK1"), count(distinct "PK1"), sum(vsize("PK1")),

substrb(dump(min("PK1"),16,0,32),1,120), substrb(dump(max("PK1"),16,0,32),1,120)
, count("PK2"), count(distinct "PK2"), sum(vsize("PK2")),

substrb(dump(min("PK2"),16,0,32),1,120), substrb(dump(max("PK2"),16,0,32),1,120)
, count("D1"), count(distinct "D1"),

substrb(dump(min("D1"),16,0,32),1,120), substrb(dump(max("D1"),16,0,32),1,120)
, count("D2"), count(distinct "D2"), sum(vsize("D2")),

substrb(dump(min("D2"),16,0,32),1,120), substrb(dump(max("D2"),16,0,32),1,120)
, count("D3"), count(distinct "D3"), sum(vsize("D3")),

substrb(dump(min(substrb("D3",1,32)),16,0,32),1,120),
substrb(dump(max(substrb("D3",1,32)),16,0,32),1,120)

from "SCOTT"."T1" t

select /*+ */ count(*) as nrw
, count(distinct sys_op_lbid(177913,'L',t.rowid)) as nlb
, count(distinct hextoraw(sys_op_descend("PK1")||sys_op_descend("PK2"))) as ndk
, sys_op_countchg(substrb(t.rowid,1,15),1) as clf
from "SCOTT"."T1" t
where "PK1" is not null
 or "PK2" is not null

The first SQL which gets the table and column statistics is very much like the one in Oracle 8 except for the different
way of determining the column min and max values. Obviously, the 2nd SQL replaces the “analyze index” command of
Oracle 8. Note the undocumented internal functions.

2 See the appendix for the table definition.
3 The list of, partly undocumented, hints has been omitted for brevity.

4 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

USING NON-DEFAULT METHOD_OPT SETTINGS

I have never had any trouble with DBMS_STATS – aside from an early problem with partitioned tables (just
needed to gather statistics explicitly for each partition) in 8.1.6. But I see complaints about DBMS_STATS on
metalink and in newsgroups by others. Maybe it is because I always use the default method_opt setting,
except for a few select histograms. Let us look at the generated SQL for two requests posted in newsgroups:
DBMS_STATS.GATHER_TABLE_STATS (

 ownname => NULL
, tabname => 't1'
, estimate_percent => 10
, method_opt => 'FOR ALL COLUMNS'
, cascade => TRUE
);

ORACLE 8i

analyze table "SCOTT"."T1" ESTIMATE statistics sample 10 percent
FOR TABLE
FOR ALL INDEXES
FOR ALL COLUMNS

I am not certain if the requester realizes and intended what he is asking for. It is the creation of histograms for all
columns of the table with the default bucket size of 75. Note that Oracle 8 in that case retorts completely to analyze,
which is one more reason why I do not understand the claims of different results from gather_table_stats as opposed
to analyze.

ORACLE 9i

Oracle 9i does not use analyze anymore but watch what it generates from this request. Again, almost all hints have
been omitted for brevity and the SQL have been numbered to allow for easier reference:

1. create global temporary table sys.ora_temp_1_ds_269
on commit preserve rows cache
as
select /*+ */ "PK1","PK2","D1","D2","D3"
from "SCOTT"."T1" sample (10) t where 1 = 2

2. insert /*+ append */ into sys.ora_temp_1_ds_269
select /*+ */ "PK1","PK2","D1","D2","D3"
from "SCOTT"."T1" sample (10) t

3. select /*+ */ count(*), count("PK1"),sum(vsize("PK1")), count("PK2"), sum(vsize("PK2")),
count("D1"), count("D2"), sum(vsize("D2")), count("D3"), sum(vsize("D3"))
from sys.ora_temp_1_ds_269 t

4. select min(minbkt), maxbkt, substrb(dump(min(val),16,0,32),1,120) minval,
substrb(dump(max(val),16,0,32),1,120) maxval, sum(rep) sumrep, sum(repsq) sumrepsq, max(rep)
maxrep, count(*) bktndv
from (select val, min(bkt) minbkt, max(bkt) maxbkt, count(val) rep, count(val)*count(val) repsq

from (select /*+ */ "PK1" val, ntile(75) over (order by "PK1") bkt
from sys.ora_temp_1_ds_269 t
where "PK1" is not null)

group by val)
group by maxbkt
order by maxbkt

5. select substrb(dump(val,16,0,32),1,120) ep, cnt
from (select /*+ */ "PK1" val, count(*) cnt

from sys.ora_temp_1_ds_269 t
where "PK1" is not null
group by "PK1"
order by 1)

6. select min(minbkt), maxbkt, substrb(dump(min(val),16,0,32),1,120) minval,
substrb(dump(max(val),16,0,32),1,120) maxval, sum(rep) sumrep, sum(repsq) sumrepsq, max(rep)
maxrep, count(*) bktndv
from (select val, min(bkt) minbkt, max(bkt) maxbkt, count(val) rep, count(val)*count(val) repsq

from (select /*+ */ "PK2" val, ntile(75) over (order by "PK2") bkt

Using DBMS_STATS in Access Path Optimization 5

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

from sys.ora_temp_1_ds_269 t
where "PK2" is not null)

group by val)
group by maxbkt
order by maxbkt

7. select substrb(dump(val,16,0,32),1,120) ep, cnt
from (select /*+ */ "PK2" val, count(*) cnt

from sys.ora_temp_1_ds_269 t
where "PK2" is not null
group by "PK2"
order by 1)

8. select min(minbkt), maxbkt, substrb(dump(min(val),16,0,32),1,120) minval,
substrb(dump(max(val),16,0,32),1,120) maxval, sum(rep) sumrep, sum(repsq) sumrepsq, max(rep)
maxrep, count(*) bktndv
from (select val, min(bkt) minbkt, max(bkt) maxbkt, count(val) rep, count(val)*count(val) repsq

from (select /*+ */ "D1" val, ntile(75) over (order by "D1") bkt
from sys.ora_temp_1_ds_269 t
where "D1" is not null)

group by val)
group by maxbkt
order by maxbkt

9. select min(minbkt), maxbkt, substrb(dump(min(val),16,0,32),1,120) minval,
substrb(dump(max(val),16,0,32),1,120) maxval, sum(rep) sumrep, sum(repsq) sumrepsq, max(rep)
maxrep, count(*) bktndv
from (select val, min(bkt) minbkt, max(bkt) maxbkt, count(val) rep, count(val)*count(val) repsq

from (select /*+ */ "D2" val, ntile(75) over (order by "D2") bkt
from sys.ora_temp_1_ds_269 t
where "D2" is not null)

group by val)
group by maxbkt
order by maxbkt

10. select min(minbkt), maxbkt, substrb(dump(min(val),16,0,32),1,120) minval,
substrb(dump(max(val),16,0,32),1,120) maxval, sum(rep) sumrep, sum(repsq) sumrepsq, max(rep)
maxrep, count(*) bktndv
from (select val, min(bkt) minbkt, max(bkt) maxbkt, count(val) rep, count(val)*count(val) repsq

from (select /*+ */ substrb("D3",1,32) val
, ntile(75) over (order by substrb("D3",1,32)) bkt
from sys.ora_temp_1_ds_269 t
where substrb("D3",1,32) is not null)

group by val)
group by maxbkt
order by maxbkt

11. select substrb(dump(val,16,0,32),1,120) ep, cnt
from (select /*+ */ substrb("D3",1,32) val, count(*) cnt

from sys.ora_temp_1_ds_269 t
where substrb("D3",1,32) is not null
group by substrb("D3",1,32)
order by 1)

Interesting to note the use of a temporary table when using estimate_pct < 50.

Statements 4-11 perform the histogram collection. In the statement pairs 4-5, 6-7, and 10-11 Oracle first collects data
for a height-balanced histogram using the NTILE analytic function (4, 6, 10). After recognizing that there are more
buckets than distinct values, Oracle then re-scans the table for a frequency histogram (5,7,11). Columns D1 and D2
have more distinct values than the 75 buckets and the height balanced histogram is retained (statements 8 and 9).

If there are no pre-existing statistics on the column(s), Oracle 9i will first gather a height-balanced histogram using the
NTILE analytic function and when it turns out that the requested buckets are sufficient (if NDV IS between 1.4 and 1.6
times buckets) it will rescan for a frequency histogram If there are already statistics, it will use these to make the
determination which kind of histogram to collect. Presumable it will still rescan for a frequency histogram in that case
as well if the first choice of HB histogram proves not to be right anymore.

This table had only five columns. Now imagine a table with dozens of columns. Maybe that is the reason that some
complain that GATHER_TABLE_STATS got slower in Oracle 9. It all depends on what you are asking it to do. It is

6 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

actually not as bad as it looks initially. Note that Oracle does not repeatedly sample the real table, but collects a sample
into a temporary table and from then on uses it for the histogram data gathering. Through this trick
GATHER_TABLE_STATS achieves several things:
• All data collected is from the same sample. Any correlation between values of different columns is preserved.

Something that might be problematic if each histogram was based on a separate random sample of the original
table.

• Using a global temporary table, there is a chance that the table remains in the PGA during the entire process and
does not need to be externalized (to the temp tablespace).

As an aside: even if intended, collecting histograms on all columns is a waste of time and resources to collect them
and of space to store them. A histogram on a column can only be of value if the column is used as a predicate in a
SQL4. Even using the option “for all indexed columns” is too wasteful, yet too limiting at the same time. Too wasteful
because – even if we assume that indexed columns are used in predicates, which is by no means a given – not every
predicate column requires, nor should have, a histogram, only those with a skewed data distribution. And too limiting
because, contrary to popular belief, the purpose of a histogram is not to let the optimizer choose between an index
access and a full table scan. The purpose is to give the CBO better information about the selectivity of the column,
given the particular predicates of the SQL being parsed, when the distribution of the values of the column deviates
significantly from the base assumption that every value is equally likely to occur – the uniform distribution
assumption. The choice of index access vs. full scan is only one byproduct of the more accurate selectivity and
cardinality estimate.
Histograms are like drugs – An overdose [of histograms] can kill [performance].

2.3 AUTOMATISMS

Increasingly Oracle attempts to aid the DBA with maintenance and tuning tasks or even become self-maintaining and
self-tuning. Next we look at some of the features in DBMS_STATS that fall into that category.

THE “LIST STALE” AND “GATHER STALE” OPTIONS

Requesting a list of tables with “stale” statistics – statistics which are not up-to-date – requires that
a) monitoring is enabled: alter table xxx monitoring

and
b) and the table is analyzed

The order of the two operations does not matter. Oracle then accumulates counts of rows inserted, updated, or
deleted on the table in memory, flushing the counts to the catalog table MON_MODS$ at regular intervals or when the
database is shut down. The procedures gather_schema_stats and gather_database_stats refer to that table when
invoked with the options “LIST STALE”, or “GATHER STALE” to determine if the existing statistics are stale and should
be refreshed:
declare
 a dbms_stats.objecttab;
begin
 dbms_stats.gather_schema_stats(OWNNAME=>'scott',OPTIONS=>'LIST STALE',OBJLIST=>a);
end;

SELECT5 /*+ ordered full(t) use_hash(t) use_nl(o) use_nl(u) */
U.NAME OWN,O.NAME TAB, NULL PART, NULL SPART
FROM SSYYSS..MMOONN__MMOODDSS$$ MM,SYS.TAB$ T,SYS.OBJ$ O,SYS.USER$ U
WHERE M.OBJ# = T.OBJ#

4 That is actually true of any statistic for a column. However, the standard statistics – NUM_DISTINCT, nulls, min, and

max are collected for “free” with the table statistics. It would be more cumbersome to exclude or remove them than
to keep them.

5 The actual SQL contains unions with the equivalent selects for table partitions and subpartitions which have been
omitted for brevity.

Using DBMS_STATS in Access Path Optimization 7

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

 AND BITAND(T.FLAGS,16) = 16
 AND ((BITAND(M.FLAGS,1) = 1)
 OR (((MM..IINNSSEERRTTSS ++ MM..UUPPDDAATTEESS ++ MM..DDEELLEETTEESS)) >> ((..11 ** TT..RROOWWCCNNTT))))
 AND T.OBJ# = O.OBJ# AND O.OWNER# = U.USER#
ORDER BY 1,2,3,4

It is evident that Oracle considers statistics stale when the combined DML activity touched 10% of the rows of the
table. I am not aware of a – documented or undocumented – parameter to change that percentage.

NEW IN ORACLE 9I

METHOD_OPT => 'FOR COLUMNS SIZE AUTO'

With this option Oracle determines the columns for which to collect histograms not only based on their data
distribution – method_opt => SKEWONLY does that – but also SQL workload. To do that it uses table sys.col_usage$
which is maintained by CBO during parsing:
dbms_stats.gather_table_stats(NULL, 't1', method_opt => 'FOR ALL COLUMNS SIZE AUTO');

select … , cu.timestamp cu_time, cu.equality_preds cu_ep
, cu.equijoin_preds cu_ejp, cu.range_preds cu_rp, cu.like_preds cu_lp
from user$ u, obj$ o, col$ c, col_usage$ cu, hist_head$ h
where u.name = :b1 and o.name = :b2
 and c.obj# = cu.obj# (+) and c.intcol# = cu.intcol# (+) …

In the col_usage$ table Oracle tracks which columns are used in predicates and in what kinds of predicates. That
information may be interesting for DBAs in its own right, not just as input to gather_table_stats.

ESTIMATE_PERCENT => DBMS_STATS.AUTO_SAMPLE_SIZE

With this option Oracle will dynamically determine the sample size necessary to collect accurate statistics starting with
a very coarse 1/100000th % and increasing the sampling rate by a factor of 100 until it is satisfied. For tables with
rather uniform data distribution it may be able to terminate sooner than for tables with very skewed distribution.
select /*+ … */ count(*) from "SCOTT"."BIG_TABLE_16K" sample block (.00001);
select /*+ … */ count(*) from "SCOTT"."BIG_TABLE_16K" sample block (.001);
select /*+ … */ count(*) from "SCOTT"."BIG_TABLE_16K" sample block (.1);
select /*+ … */ count(*) from "SCOTT"."BIG_TABLE_16K" sample block (10);

OPTIONS=>'GATHER AUTO'

Effectively combines all the automatic features – “gather empty”, “gather stale”, “size auto”, and auto_sample_size”
into one option where Oracle determines which tables to analyze with what sampling precision and for which
columns to gather histograms.

2.4 BACKUP ANDTRANSFER OF STATISTICS

Most of the DBMS_STATS procedures include the three parameters STATOWN, STATTAB, and STATID. They allow for
statistics to be stored outside of the dictionary, where they do not affect the optimizer.
The STATTAB parameter specifies the name of a table in which to hold statistics. Unless the STATOWN parameter is
also specified it is assumed that it resides in the same schema as the object for which statistics are collected. Different
sets of statistics can be maintained within a single STATTAB by using the STATID parameter. For the SET and GET
procedures, if STATTAB is not provided (that is, NULL), then the operation works directly on the dictionary statistics. If
STATTAB is NOT NULL, then the SET or GET operation works on the specified user statistics table, and not the
dictionary.

8 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

export_table_stats stattab

data dictionary

import_table_stats

export_table_stats

data dictionary

stattab
import_table_statsstattab

data dictionary

export - import

The DBMS_STATS package further offers the ability to copy statistics between the dictionary and the user statistics
table: EXPORT_*_STATS copies the statistics from the dictionary to the user table and IMPORT_*_STATS does the
reverse.

The user statistics table and the EXPORT_*_STATS and IMPORT_*_STATS procedures make it possible to backup
statistics; and restore them if new statistics have undesirable effects on the optimizer’s plan choices. Since the user
statistics table is an ordinary table, it can be exported and imported into another database and then IMPORTed into
that database’s dictionary to make it “look” to the optimizer like the original database. SQL statement plans can thus
be analyzed in a test database with less – or even no – data.
The biggest caveat when trying to use statistics from one database in another and expecting the CBO to make the same
decisions are missing statistics.
• Index statistics: CBO substitutes fixed defaults – LVLS=1, #LB=100, LB/K=1, DB/K=1, CLUF=800

so that is not a problem.
• Table statistics: CBO gets the ACTUAL number of blocks from the segment header, uses a default avg_row_len =

100 and derives the cardinality from #blocks * block_size / 100
that can lead to significant differences if the actual table sizes (hwm) are different or the block size is different.
Aside from that, blocksize has surprisingly little effect on the CBO’s decisions

• Column statistics: CBO derives density from num_rows established in table statistics and NDV is
round(1/density,0) (Joakim Treugut)

Missing index statistics clearly do not pose a problem since the substituted defaults are the same regardless of the
actual index size. Table and column statistics, however, are derived from the actual size of the table and if that differs
between the databases the optimizer will likely come to different conclusions. Even if all the statistics are present and
transferred, other parameters may be different: block size, sort area size, hash area size, multiblock read counts, etc.
leading to different execution plans.
And then in 9 there could be dynamic sampling, system statistics and dynamic area sizing with pga_aggregate_target.

Another way to backup or transfer statistics is via the export and import utilities. Export creates
DBMS_STATS.SET_XXX_STATS statements in the dmp file which, when executed by import restore the statistics as they
existed in the source database at the time of the export. The import utility will load the exported statistics
even if
• the table already exists (ignore=Y)

or
• no data is imported (rows=N)

unless
• analyze = N

or
• recalculate statistics = Y

Unfortunately the Oracle 8 export utility has several, IMHO severe, restrictions that preclude the export of statistics:

Using DBMS_STATS in Access Path Optimization 9

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

“In some cases, Export will place the precomputed statistics in the export file as well as the ANALYZE commands to
regenerate the statistics. However, the precomputed optimizer statistics will not be used at export time if:
A table has indexes with system-generated names (including LOB indexes)
A table has columns with system-generated names
There were row errors while exporting
The client character set or NCHARSET does not match the server character set or NCHARSET
You have specified a QUERY clause
Only certain partitions or subpartitions are to be exported
Tables have indexes based upon constraints that have been analyzed (check, unique, and primary key constraints)
Tables have indexes with system-generated names that have been analyzed (IOTs, nested tables, type tables that have

specialized constraint indexes)
” (A76955-01, 1999)

Fortunately, Oracle 9 lifts all except the second limitation – tables having columns with system generated names. In
some of the cases which prevented the Oracle 8 export utility from using the precomputed statistics, the Oracle 9
export utility will issue a warning “EXP-00091: Exporting questionable statistics.” (A96652-01, 2002)

THE “STATTAB” TABLE

The user statistics table must be built with the CREATE_STAT_TABLE procedure. There is also a DROP_STAT_TABLE
procedure which may be useful in a stored procedure, otherwise the table may just be dropped with a “drop table …”
statement.
These are the columns of the stattab table:
Name Type Name Type
STATID VARCHAR2(30)
TYPE CHAR(1)
VERSION NUMBER
FLAGS NUMBER
D1 DATE
CH1 VARCHAR2(1000)
C1 VARCHAR2(30)
C2 VARCHAR2(30)
C3 VARCHAR2(30)
C4 VARCHAR2(30)
C5 VARCHAR2(30)

N1 NUMBER
N2 NUMBER
N3 NUMBER
N4 NUMBER
N5 NUMBER
N6 NUMBER
N7 NUMBER
N8 NUMBER
N9 NUMBER
N10 NUMBER
N11 NUMBER
N12 NUMBER
R1 RAW(32)
R2 RAW(32)

In order to be able to use the stattab table to modify statistics, it is necessary to understand what the columns mean.
The following mapping is based on observation. Oracle does not document it: “The columns and types that compose
this table are not relevant as it should be accessed solely through the procedures in this package”.
STATID is the only documented column and is the user settable identifier. CH1 is currently unused and VERSION is
always 4, even for Oracle 9i. The meaning of the FLAGS bits is unknown, but bitand(flags,2) seems to correspond to
GLOBAL_STATS and bitand(flags,1) to USER_STATS. The latter also seems to be the default if FLAGS is not set in a
SET_xxx_STATS procedure call.

10 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

Except for the new system statistics, C5 is the owner and D1 is the LAST_ANALYZED date. TYPE identifies the type of
object and the meaning of the other columns depends on the TYPE:

TYPE ‘T’ TYPE ‘I’ TYPE ‘C’ TYPE ‘C’ histogram
C5
C1
C2
C3

N1
N2
N3
N4

OWNER
TABLE_NAME
PARTITION_NAME
SUBPARTITION_NAME

NUM_ROWS
BLOCKS
AVG_ROW_LEN
SAMPLE_SIZE

C5
C1
C2
C3

N1
N2
N3
N4
N5
N6
N7
N8

OWNER
INDEX_NAME
PARTITION_NAME
SUBPARTITION_NAME

NUM_ROWS
LEAF_BLOCKS
DISTINCT_KEYS
LEAF_BLOCKS_PER_KEY
DATA_BLOCKS_PER_KEY
CLUSTERING_FACTOR
BLEVEL
SAMPLE_SIZE

C5
C1
C2
C3
C4

N1
N2
N4
N5
N6
N7
N8

OWNER
TABLE_NAME
PARTITION_NAME
SUBPARTITION_NAME
COLUMN_NAME

NUM_DISTINCT
DENSITY
SAMPLE_SIZE
NUM_NULLS
LO_VALUE
HI_VALUE
AVG_COL_LEN

C5
C1
C2
C3
C4

N10
N11

OWNER
TABLE_NAME
PARTITION_NAME
SUBPARTITION_NAME
COLUMN_NAME

ENDPOINT_NUMBER
ENDPOINT_VALUE

If you want to actively work with the statistics in the STATTAB table it is best to create views that translate the terse,
generic column names, which have different meaning depending on TYPE, into names corresponding to those of the
dictionary views.

SET OR GET STATISTICS

Another possibility is to actively manipulate the statistics to affect the optimizer’s access plans using the
SET_xxx_STATS procedures. We will see uses of that technique in section 3.

2.5 DAVE ENSOR’S DBMS_STATS PARADOX

Having discussed the procedures to gather statistics, the question of course is when and how often. Whenever
someone asks for advice on how to deal with a poorly performing SQL, be it on a newsforum or on metalink, one of
the first questions invariably is “Are the statistics up-to-date”. And that is a valid question when faced with a
performance problem. Many DBAs have therefore implemented a scheduled statistics refresh process, usually during
off hours, overnight or on a weekend, to keep the statistics up-to-date. We already looked at the “GATHER STALE”
option which attempts to automate that by deciding which tables have changed enough to need to be re-analyzed. But
do they? There is a reason for the sayings “never change a winning team” and “if it ain’t broke, don’t fix it”
In his presentation at the UKOUG conference Dec 9th 2003 Dave Ensor suggested to analyze once and then leave the
[production]database alone, coining the term “DBMS_STATS Paradox”:

it is only safe to gather statistics when to do so will make no difference

While a bit oversimplified, I fully agree with Dave’s assertion.After the conference, Mogens Norgard posted the
question on the Oracle-L list “Should we stop analyzing?”, referring to Dave’s presentation. Here are some quotes
from the thread:
Contra:
• it doesn’t make sense that this would create statistics that would be detrimental to performance, unless the data at

the time the statistics are gathered is substantially different than at the time of usage
• If my data changes, and I analyze it, CBO should still find reasonable execution paths for the current data.
• However, there are cases where you really do need to get some statistics up to date - particularly for columns like

timestamps or sequences that are always increasing in value.

Using DBMS_STATS in Access Path Optimization 11

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

• but I don’t see a problem with gathering stale many times a day, every hour say6. If your tables aren’t subject to
much DML activity then they won’t be analysed anyway.

• CBO is broke if fresh statistics result in poor performance
Pro:
• I recall a particular PS site where every time we analyzed, we got into trouble... That was with 8.0 and there was

nothing we could do other than stop analyzing. Which we did and the problems went away (on that particular
table).

• No, not at all. I’m really against this “tune-every-minute” approach. (Nuno Souto)
• Is analyzing over and over again not one of the symptoms of CTD? I would not analyze weekly, or because x % of

the data has changed. I would analyze when response times degrade. Then you can search for the cause (trace the
SQL involved) and do some analyzing, when appeared necessary. (Carel-Jan Engel)

• What the CBO thinks is the best path based on estimated cardinalities can be way off. By accident, an inefficient
execution plan (as seen by the CBO) might actually be more efficient than the CBO’s optimal choice. Analyzing can
change these plans even if nothing is broken. (Henry Poras)

Diplomatic:
• Too many people do it too aggressively, too often and waste their time and the machine resources doing it for

very little benefit. But if you have the time and resources, then it doesn’t often do too much damage. (Jonathan
Lewis)

3 USING DBMS_STATS IN SQL OPTIMIZATION

MEANS TO CHANGE AN ACCESS PLAN

There are a number of ways to make the cost based optimizer choose a different the access plan. Listed by increasing
global impact:
• Change the statement
• Use a hint

These two have only local impact, isolated to the changed statement. Obviously, both require the ability to
change the statement.

• Use stored outlines
This too is isolated to the affected statement. Unlike the first two it can be used without having access to the
source, even in cases where there is no source, where the SQL is generated “on the fly”. However it requires that
the statement’s hash value is known and constant.

• Change statistics
all SQL that use or reference the component whose statistics are changed may be impacted. The big question, of
course, is: “How does one know which other SQL may be affected”? A possible technique is “Explain Plan
Analysis”7

• Create or drop an index
all SQL that use the table may be impacted. Again, how does one know what those are? The same “Explain Plan
Analysis” addresses that and there are tools on the market which do that.

• Change initialization parameters
This is the most global change since all SQL may be impacted. Unless the parameter can be changed for just a
session, e.g. a batch job. Again, the “Explain Plan Analysis” aims at finding the SQL that are affected.

6 Gathering statistics that frequently can play havoc with the parsing rates. [comment by the author]
7 An idea by the author waiting to be realized.

12 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

As the risk of changing the access paths of other SQL statements increases, so does the potential reward – rather than
tuning SQL by SQL, many statements could be improved with a single change.

We will next look at an example that uses option 3 “change statistics” to improve the performance of a SQL statement
without modifying the statement itself.

3.1 USING DBMS_STATS TO CHANGE AN ACCESS PLAN

Statistics affecting the CBO
In order to effectively use statistics in SQL tuning, one needs to know which statistics affect the CBO and how. The
following are the statistics used by the cost based optimizer in deciding on an access plan.

Table
num_rows, blocks, avg_row_len

Column
num_distinct, density, num_nulls, low_value, high_value
with histograms: buckets, endpoint_number, endpoint_value

Index
blevel, leaf_blocks, distinct_keys, avg_leaf_blocks_per_key, avg_data_blocks_per_key, clustering_factor

Rather than setting statistics directly, which would be possible with the dbms_stats.set_xxx_stats procedures, one
could export the statistics, change the value(s) in the stattab table and then re-import the changed statistics back into
the dictionary.

3.2 OVERCOME A DEFICIENCY OF ANALYZE AND DBMS_STATS IN ORACLE 8
In Oracle 8 gathering histogram statistics for a column of a partitioned table does not create a global histogram, one
for the column over the entire table, only for each partition individually. As we already established, Oracle 8 uses the
analyze command to build the histogram, no matter what the granularity.
Table TP1 is range partitioned on column N1 with three partitions (< 1000, < 2000, < MAXVALUE).
GATHER_TABLE_STATS (NULL,'TP1',method_opt=>'FOR COLUMNS N2 SIZE 99',granularity=>'DEFAULT');

ANALYZE TABLE "SCOTT"."TP1" COMPUTE STATISTICS FOR TABLE FOR COLUMNS N2 SIZE 99
The following column statistics show that the bucket size is still 1 and the density = 1/NDV on the global level after
the analyze while on the partition level the bucket size is 2 (one less than NDV) and the density is orders of
magnitude smaller than 1/NDV, typical for a frequency histogram.
table column NDV density nulls lo hi av lg bkts G U
TP1 N1 10,000 1.0000E-04 0 0 9999 3 1 N N
 N2 3 33..33333333EE--0011 0 0 999 2 11 N N
 N3 1,000 1.0000E-03 0 0 999 3 1 N N

table column NDV density nulls lo hi av lg bkts G U
TP1.P1 N1 1,000 1.0000E-03 0 0 999 3 1 N N
 N2 3 44..99337733EE--0055 0 0 999 2 22 N N
 N3 1,000 1.0000E-03 0 0 999 3 1 N N

The data from dba_histograms and dba_tab_histograms shows the extreme skewness of the data distribution of
column n2 at the partition level while on the global table level only minimum and maximum were gathered and
stored.
table column EP value
TP1 N2 0 0
TP1 N2 1 999

table column EP value
TP1.P1 N2 10106 0
TP1.P1 N2 10118 998
TP1.P1 N2 10127 999

Using DBMS_STATS in Access Path Optimization 13

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

SINGLE TARGET PARTITION KNOWN AT COMPILE TIME

If the optimizer can, at parse time, use partition pruning to narrow the plan to a single partition it uses the histogram
data for that partition in the access path evaluation and choice:
select a.n1, b.n1, a.n3, a.d1, b.d1 from tp1 a, tp1 b
where a.n1 between 100 and 900 and a.n2 = 999
and a.n1 = b.n1 and a.n3 = b.n3
Rows Row Source Operation
 9 NESTED LOOPS
 10 TABLE ACCESS BY LOCAL INDEX ROWID TP1 PARTITION: START=1 STOP=1
 10 INDEX RANGE SCAN PARTITION: START=1 STOP=1 (object id 101102)
 9 TABLE ACCESS BY LOCAL INDEX ROWID TP1 PARTITION: START=1 STOP=1
 90 INDEX RANGE SCAN PARTITION: START=1 STOP=1 (object id 101102)

The CBO realizes that the result is limited to rows from partition P1 and, using the histogram on TP1.P1.N2, the high
selectivity of the predicate “n2 = 9999” and chooses an index access. A good choice as the execution statistics
confirm:
call count cpu elapsed disk query current rows
Parse 10 0.00 0.00 0 0 0 0
Execute 11 0.00 0.00 0 0 0 0
Fetch 20 0.13 0.13 0 2090 0 90
total 41 0.13 0.13 0 2090 0 90

NO SINGLE TARGET PARTITION KNOWN AT COMPILE TIME

Shifting the range predicate on the partitioning column n1 such that it crosses the partition boundary (n1 < 1000), the
optimizer now uses the global statistics and, in the absence of a global histogram, does not recognize the high
selectivity of the predicate “n2 = 9999” and chooses a hash join with full table scans
select a.n1, b.n1, a.n3, a.d1, b.d1from tp1 a, tp1 b
where a.n1 between 600 and 1400 and a.n2 = 999
and a.n1 = b.n1 and a.n3 = b.n3
Rows Row Source Operation
 10 PARTITION RANGE ITERATOR PARTITION: START=1 STOP=2
 10 HASH JOIN
 10 TABLE ACCESS FULL TP1 PARTITION: START=1 STOP=2
 4017 TABLE ACCESS FULL TP1 PARTITION: START=1 STOP=2

call count cpu elapsed disk query current rows
Parse 10 0.00 0.00 0 0 0 0
Execute 10 0.00 0.00 0 0 0 0
Fetch 20 4.68 4.83 96260 100160 1390 100
total 40 4.68 4.83 96260 100160 1390 100

We will use SET_COLUMN_STATS to build the missing global histogram, but

BBeeffoorree mmooddiiffyyiinngg ssttaattiissttiiccss –– aanndd tthhaatt iinncclluuddeess aannaallyyzzee!! -- aallwwaayyss,, aallwwaayyss mmaakkee aa bbaacckkuupp..
DBMS_STATS.EXPORT_TABLE_STATS (
 ownname => NULL, tabname => 'TP1',
 stattab => 'stats_table', statid => 'bkup');

14 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

We determine the global data distribution with a SQL and use the results as input to the helper procedure
PREPARE_COLUMN_VALUES. The density value we simply “borrow” from one of the partition statistics:

select n2, count(0)
from tp1 group by n2;

DECLARE
SREC DBMS_STATS.STATREC;
NOVALS DBMS_STATS.NUMARRAY;

BEGIN
SREC.EAVS := 0;
SREC.CHVALS := NULL;
SREC.EPC := 3;
NOVALS := DBMS_STATS.NUMARRAY(0,998,999);
SREC.BKVALS := DBMS_STATS.NUMARRAY(99943,33,25);
DBMS_STATS.PREPARE_COLUMN_VALUES (SREC,NOVALS);
DBMS_STATS.SET_COLUMN_STATS(NULL, 'TP1', 'N2', NULL,

NULL, NULL, 3, .000049373, 0, SREC, 2, 2);

END;

 N2 COUNT(0)
 0 99943
 998 33
 999 25

Afterwards the global column statistics show the presence of the frequency histogram and, of course, the modified
density.
table column NDV density nulls lo hi av lg bkts G U
TP1 N1 10,000 1.0000E-04 0 0 9999 3 1 N N
 N2 3 44..99337733EE--0055 0 0 999 2 22 Y N
 N3 1,000 1.0000E-03 0 0 999 3 1 N N

And we have a global frequency histogram.
table column EP value
TP1 N2 99943 0
TP1 N2 99976 998
TP1 N2 100001 999

But, just like every tuning effort, it only matters if it makes a difference in the optimizer’s access path choice and its
performance. With the improved information about the selectivity of “n2 = 999” on the global level the optimizer
chooses a plan similar to the one when only one partition was involved, except now it has to iterate over two
partitions.
Rows Row Source Operation
 10 PARTITION RANGE ITERATOR PARTITION: START=1 STOP=2
 10 NESTED LOOPS
 12 TABLE ACCESS BY LOCAL INDEX ROWID TP1 PARTITION: START=1 STOP=2
 12 INDEX RANGE SCAN PARTITION: START=1 STOP=2 (object id 101102)
 10 TABLE ACCESS BY LOCAL INDEX ROWID TP1 PARTITION: START=1 STOP=2
 110 INDEX RANGE SCAN PARTITION: START=1 STOP=2 (object id 101102)

And the performance is comparable except that it takes twice as long to iterate over two partitions compared to the
single partition access path.
call count cpu elapsed disk query current rows
Parse 10 0.02 0.02 0 0 0 0
Execute 11 0.00 0.00 0 0 0 0
Fetch 20 0.15 0.24 65 2270 0 100
total 41 0.17 0.26 65 2270 0 100

Using DBMS_STATS in Access Path Optimization 15

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

3.3 TUNE A SQL WHERE THE SOURCE IS INACCESSIBLE

After the thread on the Oracle-L list, inspired by Dave Ensor’s remark in his presentation at UKOUG, I decided to
create a demonstration for my presentation at the Hotsos symposium based on one of my tuning cases, actually the
first where I employed the “Tuning by Cardinality Feedback” method. I wanted the demo to satisfy four conditions:
• Demonstrate the danger of scheduled statistics refreshes by showing how the performance of a query deteriorates

not because of the DML activity, but because of the analyze.
• Show that it is possible to improve the performance of a SQL statement by targeted modification of statistics

without touching the SQL itself.
• In addition to those two main goals, the testcase should be “immune” to often touted setting of the initialization

parameters OPTIMIZER_INDEX_COST_ADJ and OPTIMIZER_INDEX_CACHING.
• Last but not least, the testcase – five executions of the SQL – had to finish during my presentation.
This last condition proved to be the most challenging to attain. I had to scale back two of the tables to find that
balance where the demo would exhibit all the traits I wanted it to, but still finish in a reasonable time. Of course the
differences between the plans are now much less pronounced than in the real case. In a batch job who would really
care that it takes a minute longer, but there it did not finish at all – or more correctly we did not have the time and
patience to let it finish.
The same testcase produces very similar results under Oracle 9i (9.2.0.4) where it is even impervious to dynamic
sampling which is supposed to be a solution to the predicate dependence problem. Just the run times and the exact
“trigger points” where a statistics change causes a plan change are different.
The case is based on a Peoplesoft HR system. Due to the sensitivity of the original content all data in the testcase
tables is random generated such that the resulting statistics are identical to the original statistics except for the two
scaled back tables. The WB_ prefixed tables are the trimmed down tables. The real PS_RETROPAY_EARNS tables was
more than 10 times the size (~ 1.5 million rows). The SQL and the plans in this demo are slightly different from the
ones in reality, but the point I want to make and the tuning solution by cardinality feedback are identical.
Refer to appendix B for the table, column, and index statistics of the tables and the SQL itself.
The testcase consists of the following steps:
A Execute the SQL.
B Make a change to the data. The DML is the following

INSERT INTO WB_JOB (EMPLID, EMPL_RCD#, EFFDT, EFFSEQ, JOBCODE, POSITION_NBR, EMPL_STATUS,
COMPANY, PAYGROUP, DEPTID)
values('005792', 0, trunc(sysdate), 1, '001DAD', '00005839', 'A', 'ECC', 'ECA',
'0000000339');
simulating a change to the employee effective today. It could be a change to any or all of the attributes JOBCODE
through DEPTID.

C Rerun the SQL to verify that the performance does not change as a result of this change.
D Analyze the WB_JOB table
E Rerun the SQL and note the performance degradation.
F Attempt to tune the SQL by setting OPTIMIZER_INDEX_COST_ADJ = 25 and OPTIMIZER_INDEX_CACHING = 90.

The performance returns to match that of steps A and C (almost), but the plan differs and becomes less scalable.
Furthermore, it would deteriorate rapidly and drastically if the slimmed tabled were to scaled back up.

G Use “Tuning by Cardinality Feedback” and achieve the best performance of all four plans.
Below is a chart of the elapsed times of the query. They are an average from three separate runs of the demo to
minimize the effect of random variations in the times. The labels correspond to steps above.

16 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

One may assume that it is the low cardinalities of WB_JOB.EFFDT and WB_JOB.EFFSEQ that make the plan so
vulnerable to change from just small variations in the statistics. Truth is that in the original case there were > 20,000
different EFFDT and 11 EFFSEQ. Even with this scaled down example, the SQL continues to vacillate between plans as
the cardinalities of EFFDT and EFFSEQ change (increase).
A further plus of my proposed (and implemented) tuning solution is the fact that it stabilizes the access path and the
performance. Although it is still subject to gradual deterioration as the size of the tables grows, that deterioration is
linear in relation to the table growth. I suppose any solution that includes a “ban” on table re-analyze will freeze the
access path (ever heard of plan stability?!)

3.4 TUNING BY CARDINALITY FEEDBACK

OBSERVATION

If an access plan is not optimal it is because the cardinality estimate for one or more of the row sources is off the
mark.
1 List the explain plan with the cardinality projections
2 Get the actual row counts from a SQL trace or from V$SQL_PLAN. Make sure the actual plan is identical to the

explain plan. This is the feedback part.
3 Look for the first (innermost) row source where the ratio of actual/estimated cardinality is orders of magnitude

– usually at least in the 100s
4 Find the predicates in the SQL for the tables that contribute to the row source with the miscalculated cardinality

and look for violated assumptions:
• Uniform distribution
• Predicate independence
• Join uniformity

5 5 .2 6

1 7 .0 9

1 0 5 .3 0

6 3 .1 7

5 4 .5 9

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

A C E F G

Using DBMS_STATS in Access Path Optimization 17

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

In the table below, on the right (in black) the output of an explain plan of the SQL statement with the statistics as of
“E” (after the analyze of WB_JOB). To the left of it (in blue) are the actual cardinalities from the SQL trace (tkprof) of
run “E” and at the far left the ratios of actual / estimated cardinality. Highlighted in red and bold is the operation
where the estimate and actual differ significantly for the first time in the sequence of operations.

504.6
534.9
1.0

858.1
353.3
1.0
3.0
1.6
2.7
1.0

 Rows

2
6,274
13,120
208,620

15
44,621
14,131

5
40,000
44,621
74,101
13,679
9,860
4,930
4,930
20,022
7,750
10,011

 card operation
 2 SELECT STATEMENT
 2 SORT GROUP BY
 FILTER
 26 HASH JOIN
 390 HASH JOIN
 15 TABLE ACCESS FULL PS_RETROPAYPGM_TBL
 52 NESTED LOOPS
 40 HASH JOIN
 5 TABLE ACCESS FULL PS_PAY_CALENDAR
 13,334 TABLE ACCESS FULL WB_JOB
 27,456 TABLE ACCESS BY INDEX ROWID WB_RETROPAY_EARNS
 27,456 INDEX RANGE SCAN WB0RETROPAY_EARNS
 13,679 TABLE ACCESS FULL PS_RETROPAY_RQST
 1 SORT AGGREGATE
 1 FIRST ROW
 1 INDEX RANGE SCAN (MIN/MAX) WB_JOB
 1 SORT AGGREGATE
 1 FIRST ROW
 1 INDEX RANGE SCAN (MIN/MAX) WB_JOB

Next we look at what tables contribute to the row source. In this case , a join, there are two tables,
PS_PAY_CALENDAR and WB_JOB. We therefore scrutinize the statistics of all columns used in a predicate in the SQL at
hand. The estimate for table PS_PAY_CALENDAR matches the actual rowcount so we focus on WB_JOB, although the
problem could– and to a certain degree does – lie in the join cardinality estimation.
table column NDV density lo hi bkts
PS_PAY_CALENDAR COMPANY 11 9.0909E-02 ACE TES 1
 PAYGROUP 15 6.6667E-02 ACA TEP 1
 PAY_END_DT 160 6.2500E-03 1998-01-18 2004-02-22 1
 RUN_ID 240 4.1667E-03 PP2 1
 PAY_OFF_CYCLE_CAL 2 5.0000E-01 N Y 1
 PAY_CONFIRM_RUN 2 5.0000E-01 N Y 1

WB_JOB EMPLID 26,167 3.8216E-05 000036 041530 1
 EMPL_RCD# 1 1.0000E+00 0 0 1
 EFFDT 9 1.1111E-01 1995-01-01 2003-01-01 1
 EFFSEQ 3 3.3333E-01 1 3 1
 COMPANY 10 1.0000E-01 ACE TES 1
 PAYGROUP 14 7.1429E-02 ACA TEP 1

Looking at the cardinality estimate for WB_JOB it is off by a factor of 3, which, curiously, is the cardinality of EFFSEQ.
If we look at EFFDT and EFFSEQ closely we realize that they are not independent of EMPLID, or in other words, not
every employee record occurs 27 times with 9 different effective dates and 3 different sequence numbers. If they were
we would have 27 * 26,167 = 706,509 rows in WB_JOB8 instead of 40,000.
We will counteract, even overcompensate, that assumption by setting the density9 of both columns to 1.

 DBMS_STATS.SET_COLUMN_STATS('SCOTT','WB_JOB','EFFDT',density => 1);
 DBMS_STATS.SET_COLUMN_STATS('SCOTT','WB_JOB','EFFSEQ',density => 1);

8 In the real case, with >20,000 EFFDTs and 11 EFFSEQs the predicate independence violation was far more marked.
9 That proves enough in this case. Depending on circumstances modifying NDV may be required too.

18 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

table column NDV density lo hi bkts
WB_JOB EMPLID 26,167 3.8216E-05 000036 041530 1
 EMPL_RCD# 1 1.0000E+00 0 0 1
 EFFDT 9 1.0000E+00 1995-01-01 2003-01-01 1
 EFFSEQ 3 1.0000E+00 1 3 1
 COMPANY 10 1.0000E-01 ACE TES 1
 PAYGROUP 14 7.1429E-02 ACA TEP 1

And this is the plan of the SQL in step G:

17.5
1.0
28.1
29.8
9.9
1.0
1.0
4.5
1.0

 Rows

2
6,274
13,120

15
42,054
44,621
14,130

5
40,000
122,813
13,679
11,212
5,606
5,606
17,374
6,418
8,687

 card operation
 2 SELECT STATEMENT
 2 SORT GROUP BY
 FILTER
 750 HASH JOIN
 15 TABLE ACCESS FULL PS_RETROPAYPGM_TBL
 1,499 HASH JOIN
 1,499 HASH JOIN
 1,429 HASH JOIN
 5 TABLE ACCESS FULL PS_PAY_CALENDAR
 40,000 TABLE ACCESS FULL WB_JOB
 27,456 TABLE ACCESS FULL WB_RETROPAY_EARNS
 13,679 TABLE ACCESS FULL PS_RETROPAY_RQST
 1 SORT AGGREGATE
 1 FIRST ROW
 1 INDEX RANGE SCAN (MIN/MAX) WB_JOB
 1 SORT AGGREGATE
 2 FIRST ROW
 2 INDEX RANGE SCAN (MIN/MAX) WB_JOB

Observations
• The ratios of actual/estimated are much smaller
• The cardinalities of 4 of the 5 tables are estimated accurately
• Even though the estimates for the cardinalities of PS_PAY_CALENDAR and WB_JOB were correct, the CBO

underestimated the cardinality of their join by a factor of 10, suggesting a violation of the join uniformity
assumption.

Before you begin to question my sanity consider that both IBM and Microsoft have automated and implemented
feedback in the optimizers of DB2 and SQLServer respectively. (Bruno and Chaudhuri, 2002, Markl and Lohman,
2002, Stillger, et al., 2001)
Below is a comparison of a partial latch and statistics profile of the 4 access plans10 based on Tom Kyte’s test harness.
Only latches and statistics with significant differences between the 4 plans are included here. Except for the sort
statistics to show that the sort work is the identical for all.
NAME A C E F G
LATCH.cache buffers chains 353,482 353,952 371,852 547,254 128,987
LATCH.multiblock read objects 948 952 948 850 1,232
LATCH.sort extent pool 18 19 61 6 25

STAT...CPU used by this session 267 252 617 320 188
STAT...buffer is not pinned count 110,977 110,977 110,977 233,992 10,326
STAT...buffer is pinned count 121,211 121,211 121,118 166,025 33,847
STAT...consistent gets 197,895 197,897 197,714 283,380 78,089
STAT...db block gets 83 88 83 72 170

10 Plans A and C are of course identical.

Using DBMS_STATS in Access Path Optimization 19

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

STAT...physical reads 7,418 7,698 18,751 8,488 6,466
STAT...physical reads direct 1,604 1,604 12,678 17 2,770
STAT...session logical reads 197,978 197,985 197,797 283,452 78,259
STAT...sorts (disk) 1 1 1 1 1
STAT...sorts (memory) 11 11 11 11 11
STAT...sorts (rows) 14,124 14,124 14,124 14,124 14,124
STAT...table fetch by rowid 88,160 88,160 88,160 149,864 0
STAT...table scan blocks gotten 3,786 3,786 3,786 3,399 10,324
STAT...table scan rows gotten 55,974 55,974 55,974 40,015 220,707
STAT...table scans (long tables) 2 2 2 1 3
STAT...table scans (short tables) 2 2 2 1 2

A few Notes:
• Plan F (with OPTIMIZER_INDEX_COST_ADJ = 25) shows a marked increase in consistent gets (and thus logical

reads), accompanied by an increase in “cache buffer chains” latch requests making it vulnerable to multi-user and
scaling issues.

• Plan G proves once more that full table scans are not evil.
• Plan E and G have the lowest BCHR of the four plans - 90.52% and 91.74% respectively – while having the worst

and best performance, proving yet again the inadequacy of that measure as a performance indicator.

4 APPENDIX

Name Null? Type
PK1 NUMBER
PK2 NUMBER
D1 DATE
D2 NUMBER
D3 VARCHAR2(2000)

SQL AND OBJECT STATISTICS OF THE DEMO TESTCASE

THE SQL
SELECT A.COMPANY, A.PAYGROUP, E.OFF_CYCLE, E.SEPCHK_FLAG, E.TAX_METHOD

 , E.TAX_PERIODS, C.RETROPAY_ERNCD, sum(C.AMOUNT_DIFF)
from PS_PAY_CALENDAR A

 , WB_JOB B
 , WB_RETROPAY_EARNS C
 , PS_RETROPAY_RQST D
 , PS_RETROPAYPGM_TBL E

where A.RUN_ID = 'PD2'
 and A.PAY_CONFIRM_RUN = 'N'
 and B.COMPANY = A.COMPANY
 and B.PAYGROUP = A.PAYGROUP
 and B.EFFDT = (SELECT MAX(F.EFFDT) from WB_JOB F
 where F.EMPLID = B.EMPLID and F.EMPL_RCD# = B.EMPL_RCD# and F.EFFDT <= A.PAY_END_DT)
 and B.EFFSEQ = (SELECT MAX(G.EFFSEQ) from WB_JOB G
 where G.EMPLID = B.EMPLID and G.EMPL_RCD# = B.EMPL_RCD# and G.EFFDT = B.EFFDT)
 and C.EMPLID = B.EMPLID
 and C.EMPL_RCD# = B.EMPL_RCD#
 and C.RETROPAY_PRCS_FLAG = 'C'
 and C.RETROPAY_LOAD_SW = 'Y'
 and D.RETROPAY_SEQ_NO = C.RETROPAY_SEQ_NO
 and E.RETROPAY_PGM_ID = D.RETROPAY_PGM_ID
 and E.OFF_CYCLE = A.PAY_OFF_CYCLE_CAL

group by A.COMPANY, A.PAYGROUP, E.OFF_CYCLE, E.SEPCHK_FLAG, E.TAX_METHOD
 , E.TAX_PERIODS, C.RETROPAY_ERNCD

20 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

TABLE STATISTICS

avg
TABLE_NAME free used rows blks empty row
PS_RETROPAYPGM_TBL 8 65 15 1 6 65
PS_PAY_CALENDAR 8 65 2,280 68 3 94
PS_RETROPAY_RQST 10 40 13,679 319 0 78
WB_JOB 10 40 40,000 3,398 3 282
WB_RETROPAY_EARNS 8 65 164,733 6,538 3 138

COLUMN STATISTICS

table column NDV density lo hi av lg
PS_RETROPAYPGM_TBL RETROPAY_PGM_ID 15 6.6667E-02 001 015 4
 EFFDT 7 1.4286E-01 1901-01-01 2003-05-15 8
 EFF_STATUS 1 1.0000E+00 A A 2
 OFF_CYCLE 1 1.0000E+00 N N 2

PS_PAY_CALENDAR COMPANY 11 9.0909E-02 ACE TES 4
 PAYGROUP 15 6.6667E-02 ACA TEP 4
 PAY_END_DT 160 6.2500E-03 1998-01-18 2004-02-22 8
 RUN_ID 240 4.1667E-03 PP2 4
 PAY_OFF_CYCLE_CAL 2 5.0000E-01 N Y 2
 PAY_PERIOD 1 1.0000E+00 2

PS_RETROPAY_RQST RETROPAY_SEQ_NO 13,679 7.3105E-05 2061843 2075521 8
 EMPLID 8,304 1.2042E-04 0000302 0012670 8
 EMPL_RCD# 1 1.0000E+00 0 0 2
 RETROPAY_PGM_ID 14 7.1429E-02 001 014 4

table column NDV density lo hi av lg
WB_JOB EMPLID 26,167 3.8216E-05 000036 041530 7
 EMPL_RCD# 1 1.0000E+00 0 0 2
 EFFDT 9 1.1111E-01 1995-01-01 2003-01-01 8
 EFFSEQ 3 3.3333E-01 1 3 3
 COMPANY 10 1.0000E-01 ACE TES 4
 PAYGROUP 14 7.1429E-02 ACA TEP 4

WB_RETROPAY_EARNS RETROPAY_SEQ_NO 14,532 6.8814E-05 2061843 2076374 8
 COMPANY 5 2.0000E-01 ACE TES 4
 PAYGROUP 7 1.4286E-01 ACA TEP 4
 PAY_END_DT 56 1.7857E-02 1999-08-15 2001-09-23 8
 OFF_CYCLE 2 5.0000E-01 N Y 2
 EMPLID 38,926 2.5690E-05 000036 041531 7
 EMPL_RCD# 1 1.0000E+00 0 0 2
 RETROPAY_PRCS_FLAG 3 3.3333E-01 C X 2
 RETROPAY_LOAD_SW 2 5.0000E-01 N Y 2

INDEX STATISTICS

Table index column NDV DENS #LB LVL CLUF
PS_RETROPAYPGM_TBL PS#RETROPAYPGM_TBL 15 1 0 1

RETROPAY_PGM_ID 15 6.67E-02
DESCR 15 6.67E-02

PS0RETROPAYPGM_TBL 15 1 0 1
DESCR 15 6.67E-02
RETROPAY_PGM_ID 15 6.67E-02
EFFDT 7 1.43E-01

PS_RETROPAYPGM_TBL U 15 1 0 1
RETROPAY_PGM_ID 15 6.67E-02
EFFDT 7 1.43E-01

Using DBMS_STATS in Access Path Optimization 21

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

Table index column NDV DENS #LB LVL CLUF
PS_PAY_CALENDAR PS#PAY_CALENDAR 2,280 24 1 877

COMPANY 11 9.09E-02
PAYGROUP 15 6.67E-02
PAY_END_DT 160 6.25E-03
RUN_ID 240 4.17E-03
PAY_SHEETS_RUN 1 1.00E+00
PAY_CALC_RUN 1 1.00E+00
PAY_CONFIRM_RUN 2 5.00E-01

PS0PAY_CALENDAR 2,280 22 1 2,247
RUN_ID 240 4.17E-03
PAY_CONFIRM_RUN 2 5.00E-01
COMPANY 11 9.09E-02
PAYGROUP 15 6.67E-02
PAY_END_DT 160 6.25E-03

PS_PAY_CALENDAR U 2,280 17 1 877
COMPANY 11 9.09E-02
PAYGROUP 15 6.67E-02
PAY_END_DT 160 6.25E-03

Table index column NDV DENS #LB LVL CLUF
PS_RETROPAY_RQST PS#RETROPAY_RQST 13,254 96 1 13,641

EMPLID 8,304 1.20E-04
MASS_RETRO_RQST_ID 14 7.14E-02
RETROPAY_PRCS_FLAG 3 3.33E-01

PS0RETROPAY_RQST 13,679 158 1 13,625
MASS_RETRO_RQST_ID 14 7.14E-02
RETROPAY_SEQ_NO 13,679 7.31E-05
EMPLID 8,304 1.20E-04
RETROPAY_EFFDT 285 3.51E-03
RETROPAY_PRCS_FLAG 3 3.33E-01

PS1RETROPAY_RQST 13,679 158 1 13,635
RETROPAY_PRCS_FLAG 3 3.33E-01
RETROPAY_SEQ_NO 13,679 7.31E-05
EMPLID 8,304 1.20E-04
RETROPAY_EFFDT 285 3.51E-03
MASS_RETRO_RQST_ID 14 7.14E-02

PS_RETROPAY_RQST U 13,679 131 1 13,637
RETROPAY_SEQ_NO 13,679 7.31E-05
EMPLID 8,304 1.20E-04
RETROPAY_EFFDT 285 3.51E-03

Table index column NDV DENS #LB LVL CLUF
WB_JOB WBBJOB 14 356 2 27,443

COMPANY 10 1.00E-01
PAYGROUP 14 7.14E-02

WB_JOB U 40,000 434 2 39,989
EMPLID 26,167 3.82E-05
EMPL_RCD# 1 1.00E+00
EFFDT 9 1.11E-01
EFFSEQ 3 3.33E-01

22 Using DBMS_STATS in Access Path Optimization

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

Table index column NDV DENS #LB LVL CLUF
WB_RETROPAY_EARNS WB0RETROPAY_EARNS 164,733 3,231 2 164,665

EMPLID 38,926 2.57E-05
EMPL_RCD# 1 1.00E+00
RETROPAY_SEQ_NO 14,532 6.88E-05
COMPANY 5 2.00E-01
PAYGROUP 7 1.43E-01
PAY_END_DT 56 1.79E-02
OFF_CYCLE 2 5.00E-01
PAGE# 1 1.00E+00
LINE# 1 1.00E+00
ADDL# 1 1.00E+00
EARNS_TYPE 7 1.43E-01
ERNCD 1 1.00E+00
SEQ_NO 1 1.00E+00
RETROPAY_EFFDT 56 1.79E-02

WBBRETROPAY_EARNS 164,733 0.00E+00 2,657 2 164,733
COMPANY 5 2.00E-01
PAYGROUP 7 1.43E-01
PAY_END_DT 56 1.79E-02
OFF_CYCLE 2 5.00E-01
PAGE# 1 1.00E+00
LINE# 1 1.00E+00
ADDL# 1 1.00E+00
EARNS_TYPE 7 1.43E-01
ERNCD 1 1.00E+00
SEQ_NO 1 1.00E+00
RETROPAY_PRCS_FLAG 3 3.33E-01
RETROPAY_LOAD_SW 2 5.00E-01
RETROPAY_SEQ_NO 14,532 6.88E-05

WB_RETROPAY_EARNS U 164,733 1.00E+02 2,423 2 6,538
RETROPAY_SEQ_NO 14,532 6.88E-05
COMPANY 5 2.00E-01
PAYGROUP 7 1.43E-01
PAY_END_DT 56 1.79E-02
OFF_CYCLE 2 5.00E-01
PAGE# 1 1.00E+00
LINE# 1 1.00E+00
ADDL# 1 1.00E+00
EARNS_TYPE 7 1.43E-01
ERNCD 1 1.00E+00
SEQ_NO 1 1.00E+00

METALINK NOTES

114671.1 Gathering Statistics for the Cost Based Optimizer
130899.1 How to Set User-Defined Statistics Instead of RDBMS Statistics
122009.1 How to Retrieve Statistics Generated by ANALYZE SQL Statement
130688.1 Report Statistics for a Table, it's columns and it's indexes with DBMS_STATS
130911.1 How to Determine if Dictionary Statistics are RDBMS-Generated or User-Defined
102334.1 How to automate ANALYZE TABLE when changes occur on tables
1074354.6 DBMS_STATS.CREATE_STAT_TABLE: What Do Table Columns Mean?
117203.1 How to Use DBMS_STATS to Move Statistics to a Different Database
149560.1 Collect and Display System Statistics (CPU and IO) for CBO usage
153761.1 Scaling the system to improve CBO optimizer

Using DBMS_STATS in Access Path Optimization 23

© Wolfgang Breitling, Centrex Consulting Corporation Hotsos Symposium, March 7-10, 2004

BIBLIOGRAPHY

Christodoulakis, S. (1984). Implications of Certain Assumptions in Database Performance Evaluation. ACM Transactions on
Database Systems (TODS), 9(2).

Breitling, Wolfgang. Fallacies of the Cost Based Optimizer. presented at the Hotsos Symposium on Oracle Performance,
Dallas, Texas, February 10-12 2003.

Breitling, Wolfgang. A Look under the Hood of CBO: The 10053 Event. presented at the Hotsos Symposium on Oracle
Performance, Dallas, Texas, February 10-12 2003.

REFERENCES

A76936-01. Oracle8i - Supplied PL/SQL Packages Oracle Corporation, 1999. Available from
http://otn.oracle.com/pls/tahiti/tahiti.docindex.

A76955-01. Oracle8i - Utilities Oracle Corporation, 1999. Available from
http://otn.oracle.com/pls/tahiti/tahiti.docindex.

A96612-01. Oracle9i - Supplied PL/SQL Packages and Types Reference Oracle Corporation, 2002. Available from
http://otn.oracle.com/pls/db92/db92.homepage?remark=tahiti.

A96652-01. Oracle9i - Utilities Oracle Corporation, 2002. Available from
http://otn.oracle.com/pls/db92/db92.homepage?remark=tahiti.

Bruno, Nicolas, and Surajit Chaudhuri. Exploiting Statistics on Query Expressions for Optimization. presented at the ACM
SIGMOD international conference on Management of data, Madison, Wisconsin 2002.

Markl, Volker, and Guy Lohman. Learning Table Access Cardinalities with LEO. presented at the ACM SIGMOD
international conference on Management of data, Madison, Wisconsin, June 4-6 2002.

Stillger, Michael, Guy Lohman, Volker Markl, and Mokhtar Kandil. LEO – DB2’s Learning Optimizer. presented at the
27th International Conference on Very Large Data Bases (VLDB), Rome, Italy 2001.

ABOUT THE AUTHOR

Wolfgang Breitling has over 25 years experience working in the IT industry, and of those more than 20 years
working with databases. After a university degree in mathematics he joined IBM Germany in the QA
department where he was involved in the development of an OS kernel for /370 hardware architecture
testing and a test harness to measure the performance of /370 operation codes. After leaving IBM, Mr.
Breitling worked in Switzerland and Canada with many database systems (DL/1, IMS, Adabas, SQL/DS,
and DB2) and since 1993 Oracle. In 1996 he founded Centrex Consulting Corporation
(www.centrexcc.com) which specializes in Oracle and Peoplesoft administration and optimization. In this
capacity he has contracted among others to Anderson Consulting (now Accenture), Oracle and IBM. In
recent years, Mr. Breitling has given presentations at IOUG conferences, at the 2003 Hotsos Symposium on
Oracle Performance, and at the 2003 AOTC spring conference.

http://otn.oracle.com/pls/tahiti/tahiti.docindex
http://otn.oracle.com/pls/tahiti/tahiti.docindex
http://otn.oracle.com/pls/db92/db92.homepage?remark=tahiti
http://otn.oracle.com/pls/db92/db92.homepage?remark=tahiti
http://www.centrexcc.com/

	NameType

